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Abstract. Individual differences in working memory capacity are related to a variety of behaviors both within and outside of the lab.
Recently developed automated complex span tasks have contributed to increasing our knowledge concerning working memory capacity
by making valid and reliable assessments freely available for use by researchers. Combining the samples from three testing locations
yielded data from over 6,000 young adult participants who performed at least one of three such tasks (Operation, Symmetry, and Reading
Span). Normative data are presented here for researchers interested in applying cutoffs for their own applications, and information on
the validity and reliability of the tasks is also reported. In addition, the data were analyzed as a function of sex and college status. While
automated complex span tasks are just one way to measure working memory capacity, the use of a standardized procedure for adminis-
tration and scoring greatly facilitates comparison across studies.
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Throughout the psychological literature, working memory
capacity (WMC) is a critical construct for cognitive func-
tioning. Numerous studies showed that WMC is strongly
related to intelligence (Kane, Hambrick, & Conway, 2005;
Oberauer, Schulze, Wilhelm, & Süß, 2005) and executive
functions (McCabe, Roediger, McDaniel, Balota, & Ham-
brick, 2010). WMC is seen as a core cognitive deficit in
theories of aging, schizophrenia, ADD, Alzheimer’s dis-
ease, and reading disability (Engle & Kane, 2004; Kane,
Conway, Hambrick, & Engle, 2007). Furthermore, indi-
vidual differences in WMC have been implicated in social
psychology phenomena such as stereotype threat, emotion
regulation, and intrusive thought suppression. WMC has
also been studied in applied research on multitasking,
driving under distraction, and fatigue in medical students
and pilots (Engle, 2010).

Therefore, the proper measurement of individual dif-
ferences in WMC is critical. To facilitate accurate and
reliable measurement, Engle and colleagues created and
made freely available automated versions of three of the
most widely used WMC measures (Operation, Symme-
try, and Reading Span), which take into account psycho-
metric and theoretical considerations known to influence
scores on these tasks. In the present article, we highlight
the broad applicability of automated complex span tasks

(CSTs) and present new analyses of data collected at
three testing locations over the past 8 years. We begin
with some background on the use of CSTs as WMC mea-
sures.

CSTs as WMC Measures

Simple span tasks such as Digit Span and Corsi Blocks, in
which subjects serially report a series of items presented,
have been widely used in standardized intelligence test bat-
teries. The Reading Span (Daneman & Carpenter, 1980)
combined the storage aspect of a simple span task (remem-
ber a series of words in order) with an interleaved process-
ing task (reading a sentence) – hence the label “complex
span task.” Daneman and Carpenter found that the number
of words recalled in the CST (Reading Span) – but not in
the simple span task (Word Span) – predicted performance
in reading comprehension and pronoun reference criteria
measures. This finding supported the view that CSTs mea-
sure a dynamic working memory system that involves both
the storage and processing of information, in contrast to
simple span tasks, which measure a short-term memory ca-
pacity that involves storage only. Meta-analyses showed
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that CST performance is strongly related to reading com-
prehension (Daneman & Merikle, 1996) and fluid intelli-
gence (Ackerman, Beier, & Boyle, 2005; Kane et al., 2005;
Unsworth & Engle, 2007), and that effects of cognitive ag-
ing are larger for CSTs than for simple span tasks (Bopp &
Verhaeghen, 2005).

After the introduction of Reading Span, subsequent re-
search explored potential associations of the processing
component in CSTs with criterion-related abilities.
Turner and Engle (1989) showed with Operation Span
that the processing content of the CST (viz., math oper-
ations) need not be similar to the ability criterion in order
to measure WMC. Later, Shah and Miyake (1996) devel-
oped Symmetry Span, in which participants made sym-
metry judgments and remembered spatial locations. Shah
and Miyake demonstrated a verbal-spatial distinction be-
tween Symmetry and Reading Span in the prediction of
spatial abilities, consistent with Baddeley’s (1986) work-
ing memory model. However, Kane et al. (2004) demon-
strated that the storage components of Reading, Opera-
tion, and Symmetry Span account for similar variance in
verbal and spatial ability tests, leading to the view that
individual differences in WMC are predominantly do-
main-general.

Individual Differences in Working
Memory Capacity

To account for the broad predictive utility of CSTs, Engle
and colleagues proposed that performance on Operation,
Symmetry, and Reading Span primarily reflect individual
differences in executive attention (Engle & Kane, 2004;
Kane et al., 2007). Executive attention includes both
memory and attention abilities (Unsworth & Engle, 2007),
and reflects the ability to temporarily maintain goal-rele-
vant information in primary memory and to retrieve infor-
mation from secondary memory. The ability to maintain
and retrieve information is especially important in situa-
tions with high interference, such as the CSTs, where at-
tention must switch between mental representations, and
where information needs to be remembered and then
quickly forgotten again across trials. In support of this no-
tion, numerous studies showed that performance on CSTs
predicts performance on tasks requiring attentional con-
trol, such as Stroop, antisaccade, flankers, attentional
blink, and go/no-go tasks, although these tasks do not
have an obvious memory component (see Kane et al.,
2007, for a review). Critically, low scorers on CSTs per-

Figure 1. Example screenshots from Operation, Symmetry, and Reading Span. The first three slides show one process-
ing-storage sequence, and the last two slides show the recall and feedback screens at the end of each trial.
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form worse in attention tasks in the interference condi-
tions, but not the control conditions, indicating that WMC
does not reflect a general deficit.

Automated Complex Span Tasks

Unsworth, Heitz, Schrock, and Engle (2005) reported on
the development of an automated version of Operation
Span. Automated versions of Symmetry and Reading
Span were described in Unsworth, Redick, Heitz, Broad-
way, and Engle (2009). Compared to “traditional” CSTs,
the automated CSTs are quickly administered, completely
computerized and mouse-driven, and automatically
scored. In addition, the automated CSTs generate a ran-
dom combination of trials and list lengths at each admin-
istration, use to-be-remembered items that are distinct
from the processing task, and present feedback on pro-
cessing and storage accuracy at the end of each trial.

For each trial in automated Operation Span, partici-
pants first see an arithmetic equation, then indicate
whether a presented answer is correct, and finally see a
letter to remember for later recall (Figure 1). After three
to seven such processing-and-storage presentations, a re-
call grid is presented, and participants must click on the
letters they saw during the trial in correct serial order.
Reading and Symmetry Span are similarly structured ex-
cept for obvious differences in content (Figure 1). For all
automated CSTs, there are three practice conditions be-
fore proceeding to the real trials: (a) storage-task only,
(b) processing-task only, and (c) processing-and-storage
tasks interleaved. An upper bound on processing time
during the processing-and storage task trials is based on
the participant’s performance during the processing-task
only condition – the participant’s mean plus 2.5 SDs. This
method of establishing individualized time limits was de-
termined after extensive pilot testing and was motivated
by a concern with possible processing-storage tradeoffs
if the participant was allowed to take as much time as
desired during the processing task. Consistent with such
concerns, research has shown that CSTs with unlimited
processing times do not predict higher-order cognition
compared to CSTs in which processing decision-times
are constrained (Friedman & Miyake, 2004; St. Clair-
Thompson, 2007).

For all of the automated CSTs, the final screen of the
program displays five scores: (a) absolute storage score,
which is the sum of all trials in which all items were re-
called in the correct serial order; (b) partial storage score,
which is the sum of items recalled in the correct serial
position, regardless of whether the entire trial was re-
called correctly; (c) processing errors, which are the total
number of errors made on the processing task; (d) speed
errors, which are the number of processing problems that
were not answered before the individualized time limit;
and (e) accuracy errors, which are the number of process-

ing problems that were answered incorrectly (note that
processing errors = speed errors + accuracy errors).

Although the automated CSTs provide storage scores
based on an absolute-scoring and partial-credit scoring
method, research indicates that the psychometric proper-
ties of partial-credit scoring are better. For the traditional
CSTs, partial-credit scores have higher internal consis-
tencies (Conway et al., 2005; Friedman & Miyake, 2005)
and stronger relationships with reading comprehension
(Friedman & Miyake, 2005) and matrix reasoning (Uns-
worth & Engle, 2007) compared to absolute-scoring
scores. The absolute-scoring method makes less sense
from a test-theory perspective, because information is
discarded that could be used to distinguish among indi-
viduals’ performance. We advocate the use of the partial
scores based on analyses of the traditional CSTs: This
paper represents the first attempt to compare the two
scoring methods provided in the automated CSTs.

The purpose of the remainder of the article is twofold.
First, we review previously published evidence for the
test-retest reliability, construct validity, and criterion-re-
lated validity of the automated CSTs. Second, we report
new analyses of data from over 6000 participants to ex-
amine the internal consistency and convergent validity of
the automated CSTs, along with normative descriptive
statistics. Although most researchers solely use perfor-
mance on the storage aspect of CSTs to measure WMC,
we also report normative data for processing errors (for
detailed analyses of processing performance on the auto-
mated CSTs, see Unsworth, Redick et al., 2009).

Test-Retest Reliability

We begin by presenting information from previously pub-
lished studies. Test-retest reliabilities for the automated
CSTs from Unsworth et al. (2005) and Unsworth, Redick
et al. (2009) are presented in Table 1. Note that the test-re-
test reliabilities based on the absolute scores are lower than
the partial scores. In addition, although partial scores were
significantly higher at time 2 relative to time 1 for each task
(all ps < .05), the increase was only 2–3 items, indicating
relatively small practice effects on the automated CSTs.
Importantly, as indicated by the high test-retest reliabilities,
the rank-ordering of individuals was stable across test ses-
sions.

Table 1. Test-retest reliabilities

Operation
(N = 78)

Symmetry
(N = 138)

Reading
(N = 138)

Absolute score .77 .62 .76

Partial score .83 .77 .82
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Construct and Criterion-Related
Validity

The automated and traditional versions of the CSTs corre-
late strongly with each other (Unsworth et al., 2005). The
automated CSTs are also highly correlated with other com-
monly used working memory measures such as Running
Letter Span (Broadway & Engle, 2010) and Letter-Number
Sequencing (Shelton, Elliott, Hill, Calamia, & Gouvier,
2009). The correlation between the automated CSTs and
the n-back task is small (Jaeggi, Studer-Leuthi et al., 2010;
Unsworth, 2010b; Unsworth, Miller et al., 2009), although
this is consistent with previous research (Jaeggi, Busch-
kuehl, Perrig, & Meier, 2010; Kane et al., 2007) showing
little overlap between performance on traditional CSTs and
n-back tasks.

Numerous studies have used the automated CSTs to pre-
dict performance in other domains. Table 2 shows studies
in which automated CSTs were used to predict either per-
formance on Raven Progressive Matrices (fluid intelli-
gence) or a Vocabulary test (crystallized intelligence). As
can be seen, the zero-order correlations are consistently
higher with Raven than with Vocabulary. In addition, using
a multidimensional scaling approach, Tucker-Drob and
Salthouse (2009) showed that all three automated CSTs
centrally loaded with highly g-loaded reference variables
such as Raven, Letter Sets, and Shipley Abstraction. As has
been found repeatedly with the traditional CSTs, perfor-
mance on automated CSTs is predictive of higher-order
cognitive abilities. Importantly, like traditional CSTs, the
automated CSTs are also predictive of low-level attention
abilities, including sustained attention (McVay & Kane,
2009), selective attention (Redick & Engle, 2006), and re-
sponse inhibition (Unsworth, Spillers, & Brewer, 2009). Fi-

nally, CST performance declines with increasing age in
adulthood for both traditional (McCabe et al., 2010) and
automated (Salthouse, Pink, & Tucker-Drob, 2008) CSTs.

Normative Sample

In order to answer other psychometric questions about au-
tomated Operation, Symmetry, and Reading Span, we com-
bined the data of three research sites that used the identical
versions of the tasks from 2004 to 2009. Although many of
these participants’ data were analyzed for individual stud-
ies, the present analyses are new. All participants at the
University of Georgia (UGA) and the University of North
Carolina Greensboro (UNCG) were students participating
for credit. Participants at the Georgia Institute of Technol-
ogy (GT) included: (a) GT students participating for either
credit or pay; (b) students enrolled at other area colleges
and technical schools participating for pay; or (c) nonstu-
dents from the community participating for pay. All partic-
ipants were young adults between the ages of 17 and 35
who completed at least one automated CST. An advantage
of the aggregate sample is that our participants have a wide
range of cognitive abilities, operationally defined here as
“college status.” According to Princeton Review, incoming
freshmen in the 2008 class had the following verbal/quan-
titative/total SAT scores: GT (644/690/1334); UGA
(616/618/1234); UNCG (522/523/1045).

In addition, our inclusion of nonstudents from the Atlan-
ta area allowed a more adequate representation of the lower
end of the cognitive ability spectrum, which is useful for
generalization to the population of all young adults (not just
college students). For example, although many theoretical
research studies use only college students as participants,
clinical and medical studies are more likely to use nonstu-
dents from the general population. With the current dataset
(N = 6,274), we were able to address typical performance,
internal consistency, and relationships among the automat-
ed CSTs.

The normative data are useful for a variety of reasons.
First, many WMC researchers (including ourselves) select
participants who score in the upper or lower quartile of our
distribution of automated CST performance and then com-
pare these individuals on another task of interest. The ex-
treme-groups approach was crucial to the development of
the executive-attention theory of WMC, because the need
to manipulate multiple variables of interest within the at-
tention tasks does not fit easily within a regression-based
approach. For example, Kane and Engle (2003) compared
high- and low-WMC individuals on accuracy and response
times to different Stroop task conditions by manipulating
the frequency of incongruent trials, the order of task con-
ditions, and the presence of feedback. While the extreme-
groups method has its limitations (Preacher, Rucker, Mac-
Callum, & Nicewander, 2005), it is analogous to aging
studies that sample young and older adults and compare

Table 2. Automated CST correlations from previous studies

Source N Raven Vocab

Broadway & Engle (2010) E1 89 .44

Broadway & Engle (2010) E2a 151 .53

Broadway & Engle (2010) E2b 143 .52

Jaeggi, Studer-Leuthi et al. (2010) 104 .24

Shelton, Elliott, Hill, Calamia, & Gouvier
(2009)

174 .29

Unsworth, Heitz, Schrock, & Engle (2005) 252 .38

Unsworth, Brewer, & Spillers (2009) 173 .26

Unsworth, Redick et al. (2009) 138 .51

Unsworth, Spillers, & Brewer (2009) 155 .23

Unsworth & Spillers (2010) 181 .20

Unsworth (2010b) 165 .32 .09

Unsworth (2010a) 161 .12

Unsworth & Brewer (2010) 177 .12

Unsworth, Spillers, & Brewer (2011) 156 .15

Note. Correlations from studies that administered multiple automated
CSTs were averaged together.
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their performance on a task of interest. Thus, one use of the
normative data is that researchers can compare their sam-
ples to the normative data and conduct extreme-groups
studies without sampling the middle part of the distribution.
In addition, the normative data may be helpful for individ-
uals who want to use the automated CSTs in clinical assess-
ments. For example, automated Operation and Symmetry
Span are part of a consensus panel’s cognitive battery for
schizophrenia research (Barch et al., 2009).

Descriptive Statistics

Descriptive statistics are presented in Table 3. Although the
storage scores are normally distributed (skewness < 2 and
kurtosis < 4; Kline, 1998), the skewness and kurtosis for
the processing accuracy variables are very high (see also
Unsworth, Redick et al., 2009). There is often a floor effect
for processing errors for college students because the pro-
cessing decisions are intended to be a distraction for the
storage task. Given the high skewness and kurtosis, pro-
cessing accuracy analyses should be conducted after cor-
recting for the deviation from normality (e.g., Unsworth,
Redick et al., 2009, used an arcsin transformation). Table
4 shows the storage scores for each task as a function of
the percentile in the dataset. These percentiles are provided
for median-, tercile-, and quartile-based assignment of
group (high/low).

We also examined gender effects on automated CSTs.
Gender information was not available for N = 469 partic-
ipants. Examining the partial storage scores, males re-
membered more items than females on all three tasks:
Operation, t(5815) = 3.42, p < .01, d = .09; Symmetry,
t(5589) = 9.78, p < .01, d = .26; Reading, t(5112) = 2.24,
p = .03, d = .06. The male advantage was only 1–2 items
for each of the tests, and as the effect sizes indicate, the
magnitude of the gender effects were small, especially
for Operation and Reading Span. Males made more pro-
cessing errors than females on two of the tasks: Opera-
tion, t(5815) = 3.21, p < .01, d = .08; Symmetry, t(5589)
= 0.94, p = .35, d = .03; Reading, t(5112) = 7.01, p < .01,
d = .19. The female advantage was less than one error for
each test, and again the magnitude of the gender effects
was small.

Performance was also examined based on the school that

the participants were attending (Table 5). Consistent with
the SAT scores reported above, the automated CST scores
of the GT students were slightly higher than those of the
UGA students, and both GT and UGA students scored
higher than the UNCG students. The scores of the UNCG
students were most similar to the group of non-GT partic-
ipants, which represented a mix of Atlanta area college stu-
dents and nonstudents.

Table 3. Descriptive statistics

Measure Mean SD Skew Kurtosis

Operation span (N = 6,236)

Absolute score 42.04 17.67 –0.28 –0.59

Partial score 57.36 13.65 –1.30 1.74

Processing errors 6.58 5.27 3.34 20.73

Speed errors 1.48 2.38 12.21 305.13

Accuracy errors 5.11 4.49 3.41 18.59

Symmetry span (N = 6,018)

Absolute score 18.76 9.62 0.20 –0.64

Partial score 27.87 8.26 –0.61 –0.03

Processing errors 3.41 4.02 2.94 13.25

Speed errors 0.67 1.54 11.55 239.69

Accuracy errors 2.74 3.55 3.03 13.23

Reading span (N = 5,537)

Absolute score 36.51 18.83 –0.01 –0.86

Partial score 53.81 15.09 –0.97 0.56

Processing errors 5.08 4.70 4.04 30.98

Speed errors 1.41 1.67 2.41 11.11

Accuracy errors 3.66 4.21 5.23 48.22

Table 4. Percentiles for storage scores

Measure 5 25 33.3 50 66.6 75 95

Operation span (N = 6,236)

Absolute score 10 30 34 43 51 55 68

Partial score 29 51 55 61 65 67 73

Symmetry span (N = 6,018)

Absolute score 4 12 14 19 23 25 35

Partial score 13 23 25 29 33 34 39

Reading span (N = 5,537)

Absolute score 6 22 27 37 46 51 68

Partial score 24 46 50 57 63 65 73

Table 5. Partial scores as a function of college status

Overall GT UGA UNCG nonGT

Operation 57.35 (13.66) 62.46 (9.79) 61.16 (10.87) 52.02 (15.20) 53.31 (14.93)

N = 6,236 N = 1,245 N = 2,010 N = 1,511 N = 1,470

Symmetry 27.87 (8.26) 31.29 (6.71) 29.67 (7.32) 26.42 (8.24) 24.31 (8.79)

N = 6,018 N = 1,245 N = 1,786 N = 1,512 N = 1,475

Reading 53.81 (15.09) 59.78 (11.19) 58.11 (12.87) 46.77 (15.46) 49.58 (16.58)

N = 5,537 N = 1,037 N = 2,000 N = 1,504 N = 996
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Internal Consistency

The internal consistency of the storage scores was calcu-
lated in two different ways with the same methods used by
Engle, Tuholski, Laughlin, and Conway (1999) and Kane
et al. (2004) with traditional CSTs. First, because there are
three presentations of each of the five list lengths in the
CSTs, each of the 15 trials can be identified as the first,
second, or third instance of a particular list length. The first
instance of all list lengths can be used to create a score
based on those five trials, then the same for the second and
third instances of each list length, and then calculate a
Cronbach’s α based on each third of the test. Second, using
Kane et al.’s method, we calculated the proportion of letters
correctly recalled for each of the 15 trials and then calcu-
lated Cronbach’s α across the 15 items. As Table 6 shows,
the reliabilities for each task were well above the recom-
mended level of .70 (Nunnally, 1978) when using the par-
tial scores; internal consistencies were lower for the abso-
lute scores.

Convergent Validity

Crosstask correlations (Table 7) were examined for partici-
pants who completed all three automated CSTs (N = 5,316).
All correlations were r = .52 or higher, with the highest cor-
relation observed between the two nonspatial automated
CSTs. Note that correlations among the absolute scores were
lower by .05–.07. Also presented in Table 7 are the correla-
tions as a function of the college status of the sample. The
Operation and Reading Span correlations did not differ much
as a function of college status, but the correlations of Opera-
tion and Reading Span with Symmetry Span increased as the
ability level of the subsample decreased. For example, the
Reading-Symmetry Span correlation was r = .36 in the GT
sample, whereas the correlation was r = .59 in the non-GT
sample tested at the same site. Correlations were also exam-
ined separately for males (N = 1,897) and females (N = 2,992)
who completed all three CSTs. The correlation between Op-
eration and Reading Span did not differ between the sexes
(.68/.67 for males/females), but the correlations with Sym-
metry Span were slightly higher for males than females. Op-
eration and Symmetry Span were correlated at r = .57 and .48
for males and females, respectively; Reading and Symmetry
Span were correlated at r = .59 and .48 for males and females,
respectively.

Discussion

The data indicate that automated CSTs have desirable psy-
chometric properties as evidenced by (1) high test-retest reli-
ability, (2) high internal consistency, (3) convergent and dis-
criminant construct validity, and (4) criterion-related validity.
The normative data indicate substantial variability in auto-
mated CST performance. In addition, the automated CSTs
show extremely small or no gender effects, in contrast to
researchers who claim male advantages for WMC based on
other types of measures (e.g., Lynn & Irwing, 2008).

The analyses also show that automated CST perfor-
mance is consistent with the expected cognitive ability lev-
el of the population from which the sample was obtained.
The correlations among the automated CSTs also varied as
a function of the sample type, with lower correlations ob-
tained in the samples with higher mean performance. The
goal of these analyses was not to provide data specific to
these particular institutions, but rather to clearly demon-
strate the role that the sample plays in WMC studies using
automated CSTs. For example, a researcher interested in
the domain-general or domain-specific nature of WMC
may arrive at a different conclusion if the participants are
all GT students as opposed to community nonstudents.

Our results confirm previous findings with traditional
CSTs that partial scoring is superior to absolute scoring,
based on (1) higher test-retest correlations, (2) higher in-
ternal consistencies, and (3) higher correlations among the
three CSTs. As stated previously, the partial scoring meth-
od picks up the same variance as the absolute method, plus
additional variance due to the partial credit. Unless there is
a strong theoretical reason to use absolute scores, we rec-
ommend using partial scores as the method that is more
reliable and sensitive to individual differences in WMC.

Automated CSTs are just one way to measure WMC,
and a variety of measures should be used to eliminate the
influence of specific method-variance (Lewandowsky,
Oberauer, Yang, & Ecker, 2010). However, the standard-
ized administration and scoring of the automated CSTs, to-
gether with the large corpus of data available, are beneficial
to researchers interested in measuring WMC without cre-
ating their own task. Consistent use of validated, reliable,
standardized measures also supports the generalization of
results from a particular study by allowing for easier tests
of replication across samples in different research labs. Fi-
nally, we feel that making the computerized tasks freely

Table 6. Cronbach’s α for automated CSTs

Method Operation
(N = 6,077)

Symmetry
(N = 5,871)

Reading
(N = 5,389)

Engle, Tuholski, Laughlin,
& Conway (1999)

.86/.80 .81/.73 .88/.83

Kane et al. (2004) .84/.75 .76/.63 .86/.78

Note. Reliabilities are presented for partial/absolute scores, respec-
tively.

Table 7. Correlations among the partial storage scores on
the automated CSTs

1. Operation 2. Symmetry

1. Operation –

2. Symmetry .52/.36/.42/.51/.55 –

3. Reading .68/.61/.61/.63/.68 .53/.36/.42/.51/.59

Note. N = 5,316/1,037/1,781/1,506/992 for the overall, GT, UGA,
UNCG, and non-GT samples, respectively.
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available for download from our website (in E-Prime or
Inquisit) can increase the diversity of research on the rela-
tionship of individual differences in WMC with other con-
structs. In conclusion, the automated CSTs are valid and
reliable tools to further our understanding about the nature
of WMC and about why individual differences in WMC
are related to a variety of behaviors in and out of the lab.
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