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The present study examines two varieties of working memory (WM) capacity task: visual arrays (i.e., a
measure of the amount of information that can be maintained in working memory) and complex span
(i.e., a task that taps WM-related attentional control). Using previously collected data sets we employ
confirmatory factor analysis to demonstrate that visual arrays and complex span tasks load on separate,
but correlated, factors. A subsequent series of structural equation models and regression analyses
demonstrate that these factors contribute both common and unique variance to the prediction of general
fluid intelligence (Gf). However, while visual arrays does contribute uniquely to higher cognition, its
overall correlation to Gf is largely mediated by variance associated with the complex span factor. Thus
we argue that visual arrays performance is not strictly driven by a limited-capacity storage system (e.g.,
the focus of attention; Cowan, 2001), but may also rely on control processes such as selective attention

and controlled memory search.
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Working memory (WM) refers to a cognitive
system in which attention and memory interact
to produce complex thought (Cowan, 1988; Engle
& Kane, 2004). However, in order for this
statement to be meaningful, a concrete under-
standing of working-memory-related “‘attention”
(and its relationship to memory) must be estab-
lished. Cowan et al. (2005) offered clarification by
identifying two prominent ways in which re-
searchers have attempted to link attention and
WM. The first regards the “‘scope” of attention,
or individual differences in the amount of infor-
mation people can maintain in WM at any point
in time (Cowan, 2001; Fukuda, Vogel, Mayr, &
Awh, 2010; Vogel & Machizawa, 2004). The
second regards the “control” of attention, or
individual differences in the ability to actively

direct attention to goal-relevant information, and
away from goal-irrelevant information (Fukuda &
Vogel, 2009; Healey & Miyake, 2009; Kane,
Bleckley, Conway, & Engle 2001; Kane & Engle,
2003; Unsworth & Engle, 2007b; Vogel, McCol-
lough, & Machizawa, 2005). We attempt to define
and validate these two components, as well as to
understand the relative roles of each in higher
cognitive functioning.

INDIVIDUAL DIFFERENCES IN THE
CAPACITY OF FOCAL ATTENTION

According to Cowan (1988, 1999, 2001), the
defining property of focal attention is stable
maintenance of information in an interference-free
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state. From this perspective, information that is the
object of attention is not subject to retrieval-based
interference or time-based decay. Thus, within
Cowan’s embedded process model of WM, focal
attention eliminates the need for retrieval from
secondary (i.e., long-term) memory by keeping
units of information active over short periods of
time.

Within this framework, individual differences
in the amount of information that people can
maintain in WM at any one time are referred to as
the “scope” of focal attention. In keeping with
much of the available literature (cf. Awh, Barton,
& Vogel, 2007; Cowan et al., 2005; Fukuda et al.,
2010; Luck & Vogel, 1997; Rouder, Morey,
Moray, & Cowan, 2011) we operationalise the
scope of attention (or more generally, storage in
WM) via the visual arrays task (Luck & Vogel,
1997; Pashler, 1988), an example of which is
provided in Figure 1. This change-detection task
begins with the brief presentation of an array of
simple objects (such as coloured squares). After a
short delay (i.e., ISI on Figure 1), the array
reappears with one item encircled. The test-taker
simply indicates whether or not a specific aspect
of the object has changed, relative to its initial
presentation (e.g., has the box’s colour changed?).

When displays contain more than four items
most people begin to experience difficulty detect-
ing changes (Luck & Vogel, 1997). These perfor-
mance decrements are interpreted as evidence
that the number of to-be-remembered items in a
given display has exceeded a person’s capacity for
maintaining information within the focus of
attention (cf. Cowan, 2001; Rouder et al., 2011).
Several data transformations take into account
an individual’s tendency to guess (i.e., false alarm
rate; see Tasks, below) and thus allow for an
estimate of the number of items to which a person
is accurately responding, regardless of the abso-
lute number of items contained in the display
(Cowan et al., 2005; Pashler, 1988; Rouder et al.,
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Figure 1. Illustration of the visual arrays task. An array of
squares is presented for 250 ms. This is followed by a 900 ms
interstimulus interval (ISI). Finally participants respond as to
whether or not the encircled square has changed, relative to its
initial presentation.

2011). Using these corrections, Cowan et al.
(2005; in particular see their appendices) argue
that, across different set sizes, a typical person
accurately responds to between three and five
objects (see also Cowan, 2001). These estimates
are thus taken as evidence for a discrete “‘slots”
model of WM capacity in which people differ in
the number of distinct chunks of information that
can be actively maintained at any one point in
time (Awh et al., 2007, Rouder et al., 2011).

INDIVIDUAL DIFFERENCES
CONTROLLING THE CONTENTS OF
ATTENTION

Due to its abstract nature, attentional control is
difficult to define. We broadly characterise it as
processes that allow a person to guide focal
attention to goal-relevant information. This abil-
ity, as it relates to WM capacity, will be operatio-
nalised via performance on complex span tasks
(Daneman & Carpenter, 1980) such as the
operation (Turner & Engle, 1989) and symmetry
span (Kane et al., 2004). As depicted in Figure 2,
complex span tasks combine memory and proces-
sing into one task. The memory component
consists of the serial presentation of several items
(e.g., letters, spatial locations). The processing
component is an interpolated task that interrupts
any attempt to rehearse these items. Intuition
suggests that complex span tasks require mental
processes that are distinct from those involved in
a scope of attention task. Specifically, the inter-
leaved processing component is attention de-
manding. Successfully remembering list items
will therefore require test takers to either (1)
maintain information in the face of intermittent
distraction, or (2) return attention to critical
information, following distraction. Thus, for pre-
sent purposes, when we speak of “control of
attention” (or more specifically, control of the
contents of attention), we will actually refer to two
separate processes: selective attention and
controlled search of memory (cf. Unsworth &
Spillers, 2010).

Evidence for the relationship between complex
span and selective attention is ample. Perfor-
mance on complex span tasks predicts perfor-
mance on several measures of controlled
attention, such as the anti-saccade (Hallett, 1979;
Hutchison, 2007; Kane et al., 2001; Unsworth,
Schrock, & Engle, 2004), Stroop (Hutchison, 2007,
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Figure 2. Operation span begins with presentation of a letter, which is followed by a simple mathematical operation that must be
solved. Symmetry span begins with the presentation of a spatial location, followed by a grid-based picture the symmetry of which
must be judged. After several item/problem pairs, the participant attempts to reconstruct the list via a response screen.

Kane & Engle, 2003; Miyake et al., 2000; Stroop,
1935), Eriksen flanker (Eriksen & Eriksen, 1974;
Heitz & Engle, 2007; Redick & Engle, 2006;
Shipstead, Harrison, & Engle, 2012), and the
dichotic listening task (Colflesh & Conway, 2007;
Conway, Cowan, & Bunting, 2001). Common to
these tasks is a requirement that test-takers attend
to goal-relevant information, despite strong en-
vironmental distraction. This has led to the
hypothesis that complex span performance is
largely driven by the ability to use attention to
maintain access to critical information, particu-
larly when interference or distraction is high
(Engle & Kane, 2004; Kane, Conway, Hambrick,
& Engle, 2007).

However, this perspective has limitations. In
particular, given the assumption of a three- to
five-item attentional capacity (Cowan, 2001), all
people are apt to lose track of critical information
at some point (Unsworth & Engle, 2007a). In
these situations controlled searches of secondary
memory allow for retrieval of displaced informa-
tion (Unsworth & Engle, 2007a, 2007b, 2007c).
The major hindrance to successful memory search
is proactive interference, or competition between
relevant and irrelevant information for retrieval
into the focus of attention (cf. Davelaar, Goshen-
Gottstein, Ashkenazi, Haarman, & Usher, 2005).
One way to understand proactive interference is
to assume that over the course of several trials the
memory cues that are used to retrieve informa-
tion (e.g., attempting to remember information

from a specific time-frame; Baddeley, 1976; Wat-
kins, 1979) become associated with several lists.
Thus over these trials the cues become less
specific, resulting in diminished efficacy (Watkins
& Watkins, 1975; Wixted & Rohrer, 1994). The
end result is an increase in the amount of
irrelevant information that is cued, which in
turn results in a decreased probability of specific
information being retrieved. This phenomenon is
evidenced by the well-documented tendency of
test-takers to recall fewer and fewer items from
subsequent lists in an experiment (Keppel &
Underwood, 1962; Turvey, Brick, & Osborne,
1970; Wickens, Born, & Allen, 1963).

High performers on complex span tasks are less
prone to these build-ups of proactive interference
than are low performers (Bunting, 2006). That is,
they experience less forgetting over the course of
several trials (Friedman & Miyake, 2004; Kane &
Engle, 2000; Unsworth, 2010). This resistance to
proactive interference is hypothesised to reflect
an ability to utilise relatively specific retrieval
cues (i.e., trial-specific cues; Unsworth & Engle,
2007b), as well as an ability to use the products
of a given retrieval attempt to refine memory
searches (Spillers & Unsworth, 2011; see also
Norman, 1968; Raaijmakers & Shiffrin, 1981).

We do not intend to argue that complex span
performance is strictly driven by selective atten-
tion and controlled memory search. However, a
recent study by Unsworth and Spillers (2010)
found that complex span performance fully



Downloaded by [Georgia Tech Library] at 06:11 26 June 2012

4 SHIPSTEAD ET AL.

mediates the relationship between both of these
processes and general fluid intelligence (Gf; novel
reasoning ability). Conversely, selective attention
and controlled retrieval accounted for 75% of the
relationship between complex span performance
and Gf. Thus, while complex span is not perfectly
explained by these processes, we contend that the
relationship is strong enough to warrant construal
of complex span tasks as ‘“‘control of attention”
tasks (at least for present purposes).

THE DISTINCTION BETWEEN SCOPE
AND CONTROL TASKS

Despite a clear conceptual distinction between
the scope and control of attention, the role of
these mechanisms in WM is unclear. For instance,
Cowan et al. (2005) examined the relative con-
tributions of each component to predicting gen-
eral intelligence, ACT scores, and high school
grades. In this study the scope of attention was
defined via a variety of tasks (including visual
arrays) while control of attention was represented
via two complex span tasks. The scope and control
tasks were entered into separate steps of a
regression analysis, and it was determined that
variance that was common to all tasks explained
the largest portion of individual differences on the
three criterion measures. The complex span tasks
did predict variance above and beyond scope.
However, contrary to the assumption that this
added prediction represented control of attention,
further analyses determined that it was task-
specific. That is, either one or the other complex
span task (but not both) added incremental
prediction to the model.

Cowan et al. (2005) subsequently concluded
that the explanatory powers of WM capacity tasks
are primarily determined by the scope of atten-
tion. Specifically, it was argued that valid WM
capacity tasks prevent strategic grouping of in-
formation and thus allow for an uncontaminated
estimate of the number of items that may be
attended at one time. For visual arrays tasks,
chunking is presumably minimised by the use of
stimuli that are not verbally rehearsable. For
complex span tasks the inclusion of interpolated
distraction ostensibly prevents strategic grouping.

However, the assumption that the scope of
attention plays an important role in complex span
performance leads to a specific prediction regard-
ing the relationship between complex span tasks

and higher-order cognition. Specifically, complex
span performance should be least predictive of
abilities such as Gf at list lengths of two, since this
is an amount of information that most people can
easily maintain within focal attention. On the
other hand, list lengths of five items should be
maximally predictive of Gf, since this is an
amount of information that most people will
struggle to maintain within focal attention.

Contrary to this prediction, several studies
have since found that complex span performance
predicts Gf with equal fidelity at all list lengths
(Bailey, Dunlosky, & Kane, 2011; Salthouse &
Pink, 2008; Unsworth & Engle, 2006; see also
Unsworth & Engle, 2007b). This finding creates a
philosophical problem for interpreting the rela-
tionship between visual arrays and complex span
WM tasks as well as their ability to predict higher-
order cognition. If these tasks are indeed driven
by a single underlying factor (e.g., Cowan et al.,
2005), then it is difficult to understand why the
visual arrays task should be construed as a
measure of storage capacity. On the other hand,
if these tasks reflect distinct (but related) me-
chanisms of WM, how does one interpret com-
mon variation? This is an issue to which we will
return, following the main analyses.

THE PRESENT STUDY

The present study extends the findings of Cowan
et al. (2005); also Cowan, Fristoe, Elliott, Brunner,
& Saults, 2006) by investigating the scope and
control of WM-related attention at the latent
level. Rather than examining the degree to which
certain tasks predict cognitive ability, we are
concerned with how variation that is common to
certain types of task predicts cognitive ability.

We first explore whether visual arrays and
complex span tasks reflect common or distinct
aspects of WM. If these tasks respectively repre-
sent separable aspects of WM, then they should
converge on separate factors. If, on the other
hand, visual arrays and complex span are essen-
tially driven by the same processes (as was argued
by Cowan et al., 2005), a one-factor solution
would obtain.

To preview our results, confirmatory factor
analysis revealed that, while individual differ-
ences in visual arrays and complex span tasks
are related at the latent level, they nonetheless
represent separate aspects of WM. We thus
examined the degree to which each of these
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components contributes to general cognitive
function. A series of structural equation models
and regression analyses was conducted in which
Gf served as a criterion latent variable. These
analyses revealed that each WM component
made a contribution to the prediction of Gf above
and beyond the other. However, they also re-
vealed that a large portion of the relationship
between visual arrays (i.e., the scope of attention)
and Gf was best explained via processes that are
more strongly associated with complex span tasks
(i.e., the control of attention).

Data sets

Analyses were performed on two previously
collected samples that were selected based on
(1) inclusion of the visual arrays task, (2) multiple
complex span tasks, and (3) several measures of
Gf. Similar to a method reported by Kaufman,
DeYoung, Gray, Brown, and Mackintosh (2009)
and Kaufman et al. (2010), we separated the
visual arrays task by set size, and thus treated it as
three tasks.

The first sample (Data Set A) was collected at
the Georgia Institute of Technology, University of
Georgia, University of North Carolina-Green-
sboro, and Michigan State University. Both col-
lege students and community members were
included. These data were collected in the autumn
semester of 2009 as part of a larger study (Redick
et al., 2011). All participants were between the
ages of 18 and 30. The initial sample contained 534
participants. Due to missing data 29 participants
were excluded, leaving a final sample of 505.

The second data set (Data Set B) was collected
as part of a general screening procedure that was
conducted in summer 2008. These data have not
been previously reported in any complete form. A
total of 170 people between the ages of 18 and 35
were tested. The sample included students from
several regional colleges and universities (e.g.,
Georgia Tech, Georgia State University), as well
as members of the Atlanta community.

Tasks

Working memory capacity tasks (Visual arrays)

Visual arrays (Data Sets A & B; Luck & Vogel,
1997; Morey & Cowan, 2004, 2005). The visual
arrays task was similar to the no-load task
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reported in Morey and Cowan (2004, 2005).
White, black, red, yellow, green, blue, or purple
served as the potential square colours. Visual
arrays sets were composed of four, six, or eight
coloured blocks (see Figure 1) and presented
against a grey/silver background within a
19.1° x 14.3° display. Although squares were pre-
sented in random patterns, they were constrained
such that they could not come within 2° of one
another. Attentional capacity (k) was estimated
at each set size using equation A.6 from Cowan
et al. (2005; i.e., k =set size * [hits + correct
rejections — 1]). On each trial the target array
was presented for 250 ms. The inter-stimulus
interval lasted for 900 ms. Participants performed
20 trials at each set size; 10 were no-change, 10
were change. Different set sizes were presented
randomly. A person’s mean k at each of the three
set sizes served as separate dependent variables.

Working memory capacity tasks (Complex
span)

All other WM tasks were automated complex
span tasks (Unsworth, Heitz, Schrock, & Engle,
2005; Unsworth, Redick, Heitz, Broadway, &
Engle, 2009) in which participants complete a
processing task that is followed by a to-be-
remembered item (see Figure 2). After several
processing task/item pairs, participants attempt to
reconstruct the list of to-be-remembered items,
via mouse click. List length varied randomly. Task
performance was quantified via the partial scoring
method in which participants received one point
for each item that was recalled in its correct
position. These tasks are available for download
at http://www.psychology.gatech.edu/renglelab/

Operation span task (Data Sets A&B; Turner &
Engle, 1989; Unsworth et al., 2005). The proces-
sing task in the operation span is a simple
mathematical equation. Letters serve as the to-
be-remembered items. List lengths varied from
three to seven items. Each list length appeared
three times.

Reading span task (Data Set A; Daneman &
Carpenter, 1980; Unsworth et al., 2009). The
processing task in the reading span is a sentence
that participants judge as making sense or non-
sense. Letters serve as the to-be-remembered
items. List lengths varied from three to seven
items. Each list length appeared three times.
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Symmetry span task (Data Sets A&B; Kane
et al., 2004; Unsworth et al., 2009). The processing
task in the symmetry span displayed a black and
white figure on an 8 x 8 grid. Participants judged
whether or not the figure was symmetrical.
Spatial locations on a 4 x4 grid served as the
to-be-remembered items. List lengths varied from
two to five items. Each list length appeared three
times.

Rotation span task (Data Set A; Kane et al.,
2004; Shah & Miyake, 1996). The processing task
in the rotation span required participants to judge
whether a rotated letter was normally oriented, or
a mirror reflection. The orientation of a series of
arrows served as the to-be-remembered items.
List lengths varied from two to five items. Each
list length appeared three times.

General fluid intelligence tasks

All fluid intelligence tasks were administered
via computer. Participants provided answers via
mouse click.

Raven’s advanced progressive matrices (Data
Sets A&B; Raven, 1990). Ravens presents eight
shapes arranged in a 3 x3 matrix. The final
location is blank. Participants choose which of
several options completes the series. Participants
were allowed 10 minutes to complete the odd set
(18 problems). Number of correct responses
served as the dependent variable.

Paper folding (Data Set A; Ekstrom, French,
Harman, & Dermen, 1976). Participants saw a
diagram in which a sheet of paper is folded
several times and then hole-punched. Participants
are required to choose (from five options) how
the sheet would look if it were unfolded. Partici-
pants were allowed 4 minutes to complete Set A
(10 problems). The number of correct responses
served as the dependent variable.

Letter sets (Data Sets A&B; Ekstrom et al.,
1976). Participants were shown five sets of four
letters. They were required to discover a rule that
was common to four of the sets and indicate the
set that violated that rule. Participants were
allowed 5 minutes to complete 20 problems.

Number series (Data Sets A&B; Thurstone,
1938). Participants saw a series of numbers.
They selected which of several options logically
completed the series. Participants were allowed
4.5 minutes to complete 15 problems.

Other tasks

Running span (Data Set B; Pollack, Johnson, &
Knaff, 1959). The running span is not part of our
main analysis, but is included in a supplemental
analysis. This task presented a series of five to
nine letters and required participants to remem-
ber the last three to seven items. Participants were
informed of how many items they would need to
remember at the beginning of a block of three
trials. There were a total of 15 trials. Items were
presented for 300 ms followed by a 200 ms pause.

RESULTS AND DISCUSSION
Descriptive statistics

Table 1 provides descriptive statistics for the two
data sets. In both sets the skew and kurtosis for
visual arrays set size 4 are noticeably larger than
other tasks. For present purposes these values are
not problematic (extreme skew > 3; problematic
kurtosis > 10; Kline, 1998). Correlations are pro-
vided in Table 2. All tasks were significantly
correlated (p <.01). Further information regard-
ing our treatment of different visual arrays set
sizes as separate tasks, as well as the presence of
negative k values, can be found in the Discussion
section.

Reported fit statistics

Several fit statistics are reported for each model.
Non-significant p-values are preferable, as they
indicate that the reproduced covariance matrix
does not differ from the observed matrix. With
large samples (such as Data Set A), a significant
difference may be unavoidable. Root mean
square error of approximation (RMSEA) esti-
mates the model fit to the population, while
standardised root mean square residual (SRMR)
reflects average deviation of reproduced covar-
iance matrix from the observed. For these indices,
a well-fitting model would have values below .05,
while up to .08 is acceptable (Browne & Cudeck,
1993; Kline, 1998). Non-normed fit index (NNFT)
and comparative fit index (CFI) test the model
relative to a null model in which observed
variables are assumed to be uncorrelated. A value
of .95 or higher represents a good fit (Hu &
Bentler, 1999). Finally, Akaike’s (1987) informa-
tion criterion (AIC) addresses overall model
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TABLE 1
Descriptive statistics for Data Sets A and B
Task M SD Range Skew Kurtosis
DATA SET A
VA-4 312 1.01 —2-4 —2.06 5.12
VA-6 3.49 1.67 —3-6 —0.91 0.77
VA-8 3.65 1.94 —32-8 —0.33 —0.09
OSpan 54.52 14.63 2-75 —1.00 0.67
ReSpan 52.12 14.27 0-75 —0.86 0.57
SymSpan 25.66 9.09 0-42 —0.54 —0.26
RotSpan 27.57 8.82 0-42 —0.82 0.40
RAPM 9.03 3.67 0-17 —0.32 —0.50
PapFold 5.90 2.68 0-10 —0.45 —0.63
LettSet 10.24 3.15 1-18 —0.01 —0.27
NumSeries 8.74 2.98 1-15 —0.20 —0.32
DATA SET B
VA-4 3.26 0.87 —-12-4 —2.01 512
VA-6 3.80 1.60 —2.4-6 —-1.22 2.00
VA-8 3.95 2.10 —24-8 —0.63 0.23
OSpan 57.06 14.28 12-75 —-1.17 0.94
SymSpan 26.53 8.59 5-41 —0.44 —0.47
RAPM 8.82 3.60 1-17 —0.26 —0.60
LettSet 10.18 3.37 1-17 —0.18 —0.35
NumsSeries 9.03 3.01 2-14 —0.46 —0.39
RunSpan 39.89 13.47 6-71 —0.15 —0.58

VA-4 =visual arrays, set size 4; VA-6 =visual arrays, set size 6; VA-8 =visual arrays, set size 8; OSpan =operation span;
REspan =reading span; SymSpan =symmetry span; RotSpan =rotation span; RAPM =Raven’s advanced progressive matrices;
PapFold =paper folding task; LettSet =letter sets task; NumSeries =number series task; RunSpan =running memory span.

parsimony by taking into account both goodness-
of-fit and number of to-be-estimated parameters.
Lower values are preferred.

Confirmatory factor analysis: One or
two WM factors?

We performed a confirmatory factor analysis in
order to determine whether the visual arrays and
complex span tasks are better represented via a
one-factor (i.e., I-Factor in Table 3) or two-factor
(i.e., 2-Factor in Table 3) solution. In 1-Factor all
complex span and visual arrays tasks loaded onto a
common WM factor. In 2-Factor the complex span
and visual arrays tasks loaded on separate factors.
Correlated errors were allowed between the
operation and reading span for all models invol-
ving Data Set A. This decision was based on prior
analysis of the data set (Redick et al., 2011)."

'When correlated errors were not allowed, both models
provided a poor fit to the data. This is likely due to an overall
bias towards visuo-spatial tasks. Correlating the errors be-
tween operation and reading span essentially controlled this
bias. The two-factor model provided a better fit, regardless of
whether we included correlated errors.

The results of these analyses, which support the
two-factor solution, are presented in Table 3.
First, examining Data Set A (Table 3), the two-
factor model provided a better fit to the observed
data than did the one-factor model. Relative to 1-
Factor, 2-Factor resulted in a significant x>
reduction (Ay?=238.91; p <.001). Moreover,
while 1-Factor provided a poor fit to the data, 2-
Factor resulted in a good fit across all fit statistics.

Data Set B (Table 3) replicated these results.
Once again the one-factor solution provided a
poor fit to the data. The two-factor model, on the
other hand improved x> (Ayx* =30.11; p <.001),
did not differ from the observed covariance
matrix (p =.26) and had good fit statistics.

The resulting models are displayed in Figure 3.
The latent factors that drive performance in the
visual arrays and complex span tasks have
been labelled VA and CS respectively. This
convention will be maintained throughout our
analyses. In keeping with previous discussion we
will typically interpret VA as being akin to the
focus of attention and CS as being an amalgam of
control processes. However, while the two-factor
solution clearly provided a better summary of the
data, it should be noted that these factors are
correlated. Thus, while it is suggested that visual
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TABLE 2
Correlations among variables in Data Sets A and B
Variable 1 2 3 4 5 6 7 8 9 10 11
DATA SET A
1. VA4 -
2. VA-6 .67 -
3. VA-8 49 .50 -
4. OSpan 19 23 18 -
5. ReSpan 25 33 20 .64 -
6. SymSpan 35 41 31 39 43 -
7. RotSpan 32 45 32 40 47 .60 -
8. RAPM A7 43 31 29 .38 46 45 -
9. PapFold 24 26 .19 27 33 40 35 43 -
10. LettSet 25 37 23 .30 .36 .39 .39 47 .38 -
11. NumSeries 35 40 26 33 35 43 46 .56 41 54— -
DATA SET B
1. VA4 -
2. VA-6 .66 -
3. VA-8 .50 .58 -
4. OSpan 29 .35 .39 -
5. SymSpan 45 48 48 57 -
6. RAPM 48 48 .38 51 52 -
7. LettSet 31 .36 31 45 45 51 -
8. NumSeries 45 40 .36 42 44 51 54 -
Other
9. RunSpan 42 41 34 57 46 .58 .56 .53 -

VA-4 =visual arrays, set size 4; VA-6 =visual arrays, set size 6; VA-8 =visual arrays, set size 8; OSpan =operation span;
REspan =reading span; SymSpan =symmetry span; RotSpan =rotation span; RAPM =Raven’s advanced progressive matrices;
PapFold =paper folding task; LettSet =letter sets task; NumSeries =number series task; RunSpan =running memory span. All

tasks were significantly correlated, p <. 01.

arrays and complex span tasks do indeed reflect
separable components of WM, they tap many of
the same cognitive processes.

Structural equation models: The

relationship of VA and CS to Gf

Figure 4 displays three structural equation models
(SEMs) that were conducted in order to validate
the relationship between the separate WM factors

and Gf. Based on the strength of correlation
between VA and CS we allowed each factor to
have an indirect effect on Gf. The double-headed
arrows connecting VA and CS represent this
assumption. SEM-VA assumes that the link
between CS and Gf is mediated by processes
that are strongly associated with the visual arrays
task. SEM-CS assumes the opposite relationship,
with CS exerting the only direct influence on Gf.
This model represents the view in which the
predictive power of visual arrays and complex

TABLE 3
Fit indices for confirmatory factor analyses

Model 7 df )4 RMSEA SRMR NNFI CFI AIC

DATA SET A
1-Factor 256.70 13.00 0.00 0.19 0.09 0.82 0.89 286.70
2-Factor 17.79 12.00 0.12 0.03 0.02 0.99 1.00 49.79

DATA SET B
1-Factor 35.36 5.00 0.00 0.19 0.07 0.85 0.93 55.36
2-Factor 5.25 4.00 0.26 0.04 0.05 0.99 1.00 27.25

RMSEA =root mean square error of approximation; SRMR =standardised root mean square residual; NNFI =non-normed fit
index; CFI =comparative fit index; AIC = Akaike’s information criterion.
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Figure 3. Two-factor solutions for Data Sets A and B. Note. VA-4 =

.68

visual arrays, set size 4; VA-6 = visual arrays, set size 6; VA-

8 =visual arrays, set size 8; OSpan = operation span; REspan = reading span; SymSpan = symmetry span; RotSpan = rotation
span; RAPM = Raven’s advanced progressive matrices; PapFold = paper folding task; LettSet = letter sets task; NumSer-
ies = number series task; RunSpan = running memory span; VA =visual arrays; CS = complex span.

span task is commonly determined by memory
and control processes associated with complex
span tasks. Finally, SEM-both assumes that the
VA and CS make individual contributions to Gf
(cf. Cowan et al., 2006; see also Unsworth &
Spillers, 2010). As will be seen, this model
provides the best explanation of the data.

Data Set A. Results of these SEMs are dis-
played in Table 4. Focusing on Data Set A, SEM-
VA provides a reasonable representation of the
data; however, by all indications, SEM-CS pro-
vides a better fit. Between the first two models,
the data would be best represented with a path
from CS to Gf.

However, fit statistics for SEM-both (Data Set
A) indicate that a two-path solution is preferable.
Relative to SEM-CS, the addition of a path from
VA to Gf resulted in a significant reduction in x>

SEM-VA SEM-CS

O

(Ay?>=23891; p <.001) as well as a lower AIC
(121.05 vs 131.69). Thus the two-path solution
(Figure 5) is favoured over either one-path
solution.

Data Set B. The same analyses were repeated
on Data Set B (Table 4). As with the first set,
SEM-VA provided an acceptable fit. However,
the model fit improved when CS served as the
mediating factor. Relative to SEM-VA, SEM-CS
reduced > (Ay?> =21.34) and did not differ from
the observed covariance structure (p =.09).
Moreover, it produced better fit statistics and a
lower AIC.

Contrary to Data Set A, model fit for Data Set B
was not improved by including a path from both
factors to Gf (Ay* =2.57; p <.10). Strict concern
for parsimony would thus favour the one-
path model. However, SEM-both fits the data
well (RMSEA =.05, SRMR =.04, NNFI=.98,
CFI =.99) and the additional path did not inflate

SEM-both

SN

O C)

el @/'

Figure 4. Hypothesised relationships between latent variables that drive visual arrays (VA), complex span (CS), and general fluid

intelligence (Gf).
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TABLE 4
Fit indices for structural equation models

Model 12 df )4 RMSEA SRMR NNFI CFI AIC

DATA SET A
SEM-VA 172.76 41.00 0.00 0.08 0.08 0.96 0.97 222.76
SEM-CS 81.69 41.00 0.00 0.04 0.03 0.99 0.99 131.69
SEM-both 69.05 40.00 0.00 0.04 0.03 0.99 0.99 121.05

DATA SET B
SEM-VA 47.75 18.00 0.00 0.10 0.07 0.95 0.97 83.75
SEM-CS 26.41 18.00 0.09 0.05 0.04 0.98 0.99 62.41
SEM-both 23.84 17.00 0.12 0.05 0.04 0.98 0.99 61.84

RMSEA =root mean square error of approximation; SRMR =standardised root mean square residual; NNFI =non-normed fit
index; CFI =comparative fit index; AIC = Akaike’s information criterion.

AIC (i.e., our quantitative parsimony criterion).
We therefore favour the two-path model, as it
allows direct comparison of Data Sets A and B.
Despite the exclusion of several tasks, and an
appreciably smaller sample, Data Set B essentially
replicates Data Set A (Figure 5). In both cases it is

VA-6

VA-8

.33

RotSpan

clear that, while complex span and visual arrays
tasks tap separate aspects of WM, they are highly

related to one another. The obvious inconsistency

DATA SET A

.78
.86
.22
.60 \

\
/

@/

DATA SET B

OSpan

intelligence.

N

>@/

Figure 5. Two-path structural equation models for Data Sets A and B. Solid lines are significant at the .05 level; VA-4 = visual
arrays, set size 4; VA-6 = visual arrays, set size 6; VA-8 = visual arrays, set size 8; OSpan = operation span; REspan = reading span;
SymSpan = symmetry span; RotSpan = rotation span; RAPM = Raven’s advanced progressive matrices; PapFold = paper folding
task; LettSet = letter sets task; NumSeries = number series task; VA =visual arrays; CS = complex span; Gf = general fluid

.75

.57

e

between these models is the lack of a significant
path between VA and Gf in Data Set B. However,
the path coefficients are striking in their similarity.

RAPM

PapFold
LettSet

LettSet

\.70A
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We thus attribute this non-significant path to a
combination of a relatively small correlation and a
relatively small sample (i.e., n =170 in Data Set B,
but n =505 in Data Set A).

Regression analysis

In order to clarify the unique contributions that
VA and CS make to predicting Gf we conducted a
follow-up regression analysis. For both data sets,
z-score composites of visual arrays (VAz) and
complex span (CSz) were created. These mea-
sures were then separately entered into a stepwise
regression as predictors of a z-score composite of
all Gf tasks in a given data set.

The results of these analyses are outlined in
Table 5. In the first step only one of the two
predictors was entered. Thus R? in Step 1
provides the total variation in Gf that is ac-
counted for by a given predictor. The other
predictor was then added in the second step.
Thus R? in Step 2 provides the total proportion of
variance in Gf that is accounted for by both
predictors. A R? therefore represents the amount
of variation in Gf that is attributable to the
second predictor above-and-beyond the first
(i.e., unique prediction).

The results of both regression analyses indicate
that, while VAz and CSz do share prediction of
Gf, each also contributes unique prediction. In
Data Set A, CSz uniquely accounted for 17% of
variation in Gf, while VAz uniquely accounted for
7%. In Data Set B, CSz uniquely accounted for
16% of variation in Gf, while VAz uniquely
accounted for 7%.

Thus the regression analyses confirm that
visual arrays and complex span tasks tap dissoci-
able (but related) constructs, each of which

TABLE 5
Stepwise regression with scope and control of attention
predicting Gf

Data Set A Data Set B
Step Predictor R2 AR2 R2 AR2
1 VAz 25 - 31 -
2 CSz 42 A7 47 16*
1 CSz 35 - 40 -
2 VAz 42 .07* A7 .07*

VAz is a z-score composite of visual arrays sizes 4, 6, and 8.
CSz is a z-score composite of all complex span tasks included
in a given data set. *p <.001.
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contributes unique variation to the prediction of
Gf. Several observations are relevant. First, the
proportion of unique variance accounted for by
each predictor was consistent across data sets.
Second, VAz and CSz also commonly predict
variance in Gf (18% in Data Set A; 24% in Data
Set B). Third, in both cases, CSz accounted for a
larger proportion of unique variance in Gf than
did VAz. This may be interpreted as an indication
that CSz represents a wider variety of processes
than VAz.

Reconciling with Cowan et al. (2005). The
present analyses indicate that the visual arrays
and complex span represent separable, but re-
lated, aspects of WM, each of which has distinct
implications for the prediction of higher cognition.
These results contrast with Cowan et al. (2005)
who reported a nearly complete overlap in the
predictive powers of complex span and scope of
attention tasks. However, the discrepancy of these
findings may be due to the manner in which
Cowan et al. (2005) defined the scope of attention.

In an attempt to thoroughly measure of the
scope of attention Cowan et al. (2005) defined
this variable via several tasks (including visual
arrays). Among the included measures was the
running memory span (Pollack et al., 1959). This
task presents test takers with a series of items, of
which the last three to seven must be recalled. By
the account of Bunting, Cowan and Saults (2006),
participants passively attend to items during the
initial presentation. When signalled for recall they
then use attention to retrieve as many list items as
possible from a decay-prone short term
store (Cowan, 1999, 2001). A large scope of
attention would thus allow for greater transfer
of information.

Assuming the validity of this account, the
running span and visual arrays can be justifiably
grouped into the same category of measurement.
However, Broadway and Engle (2010) argue that
the running span is actually closely related to the
complex span. In particular they found that the
correlation between these tasks is strong and
robust to changes in running span administration
(e.g., speed of item presentation, pre- vs post-
warning of how many items would need to be
recalled). Moreover, complex and running span
were shown to predict the same variation in Gf
(Broadway, 2008). In light of the present argu-
ment that visual arrays and complex span tasks
tap dissociable aspects of WM, one might argue
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that the overlap between scope and control tasks
found by Cowan et al. (2005) is the result of a
“control” task (i.e., running span) being entered
into a stepwise regression analysis as a ‘‘scope’
task.

The procedure from which Data Set B was
collected included the running span task, and thus
provided an opportunity to test whether this task
related to CS (e.g., Broadway & Engle, 2010) or
VA (e.g., Bunting et al., 2006; Cowan et al., 2005)
factor. Running span was allowed to freely load
on VA and CS from Figure 3. The first model (i.e.,
RunSpan-both; Table 6) included paths from
running span to both factors. This provided an
adequate fit to the data. However, while running
span loaded on CS (factor loading =.63), it did
not load on VA (factor loading =.08). We there-
fore conducted a second analysis in which running
span loaded only on CS. As can be seen in Table 6
(RunSpan-CS), the overall fit did not improve,
however, the extra degree of freedom did not
inflate %%, and AIC decreased from 48.33 to 46.27.
The resulting model, which indicates that running
span directly taps the same cognitive processes as
complex span tasks, is presented in Figure 6.

Despite the lack of a processing component,
running memory span is strongly related to
complex span tasks at the latent level. Its relation-
ship to visual arrays (i.e., the focus of attention) is,
on the other hand, indirect. We therefore reran
our regression analysis (i.e., Table 5; Data Set B)
with running span included as a separate step. It
was predicted that running span would share
more common prediction of Gf with the complex
span composite than with the visual arrays
composite.

The results of this analysis are displayed in
Figure 7. The three predictors commonly account
for 21% of the variation in Gf. Consistent with
our hypothesis, the next largest source of predic-
tion was the variation that was common to CSz
and running span (11%). The variation common
to running span and VAz was, on the other hand,
the smallest source of Gf prediction (3%). This

analysis thus provides a reasonable explanation
for the disparity between the present conclusions
and the near-perfect overlap between scope of
attention and complex span tasks found in the
regression analysis of Cowan et al. (2005). Run-
ning memory span (which Cowan et al. grouped
with visual arrays) is more closely identified with
complex span tasks than it is with visual arrays.

It should be noted that the running span used
by Cowan et al. (2005) featured items presented
at the rate of four per second, while the present
running span presented items at the rate of two
per second. It may be only at higher presentation
rates—when rehearsal and chucking processes are
interrupted—that the running span taps the focus
of attention (Bunting et al., 2006). However we
note that Broadway and Engle (2010) found that,
although running span scores decreased as rate of
presentation is increased (an indication that
rehearsal/chunking was interrupted; Bunting
et al.,, 2006), this did not change correlations
between running span performance and complex
span tasks or Gf. Thus, while the present analyses
do not allow for an unqualified test of our
assumptions, they nonetheless provide an infor-
mative step towards understanding the relation-
ship between these various WM tasks.

DISCUSSION

The present results indicate that the wunique
contribution of visual arrays (our proxy for the
scope of attention) to Gf is small. Returning to
Figure 5, the regression path from VA to Gf
implies that, other influences aside, VA accounts
for approximately 5% of the variation in Gf. The
subsequent regression analyses (Table 5) found a
similar result. This should not be taken as an
indication that visual arrays tasks provide a poor
reflection of Gf. In fact the SEMs indicate that
the total latent correlation between VA and Gf is
in the range of .62 to .72. The critical point to be
made is that the majority of this relationship is

TABLE 6
Fit indices for confirmatory factor analyses involving running memory span

Model 72 df p RMSEA SRMR NNFI CFI AlC
RunSpan-Both 2033 7.00 0.00 0.11 0.05 0.95 0.97 4833
RunSpan-CS 2027 8.00 0.01 0.10 0.05 0.95 0.98 4627

RMSEA =root mean square error of approximation; SRMR =standardised root mean square residual; NNFI =non-normed fit
index; CFI =comparative fit index; AIC = Akaike’s information criterion.
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Figure 6. Two-factor solution with running memory span
loading on CNTRL. VA-4 =visual arrays, set size 4; VA-6 =
visual arrays, set size 6; VA-8 =visual arrays, set size §;
OSpan =operation span; SymSpan =symmetry span; Run-
Span =running  span;  Scope =scope  of  attention;
CNTRL =control of attention.

mediated by processes that are shared with CS.
Thus, while we have interpreted VA and CS as
different aspects of WM capacity, it may be their
common mechanisms that ultimately define WM.
So while we have generally interpreted these
factors as the scope and control of WM-related
attention, it is important to consider potential
common mechanisms.

Focal attention as a common mechanism

The assumption that variance that is common to
VA and CS represents the scope of a person’s

Csz

VAZz
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attention (e.g., Cowan et al., 2005) relies, in part,
on the assumption that control processes that are
present in complex span performance are absent
from visual arrays. For instance, in a typical visual
arrays display all information is goal-relevant (but
see Vogel et al., 2005). Thus selective attention
provides an unintuitive explanation of perfor-
mance in this task. Perhaps more important,
visual arrays are often assumed (at least impli-
citly) to provide a pure measure of storage in
focal attention (Awh et al., 2007; Cowan, 2001;
Cowan et al., 2005; Fukuda et al., 2010; Luck &
Vogel, 1997). Given this assumption, controlled
memory search would not be expected to be
common to visual arrays and complex span tasks.

However, fixed capacity models of focal atten-
tion (e.g., Cowan, 2001) provide a problematic
explanation of complex span performance. Speci-
fically, the correlation between complex span and
Gf is stable across list lengths (Bailey et al., 2011;
Salthouse & Pink, 2008; Unsworth & Engle,
2006). This suggests that what complex span tasks
index is an overall aptitude for retaining or
retrieving critical information, rather than how
much information a person can simultaneously
maintain.

Oberauer’s (2002); Oberauer, SiiB, Wilhelm, &
Sander, 2007) concentric model of WM can
reconcile this concern. In this model focal atten-
tion is limited to one chunk of information.
Temporary associations between this item and
activated elements of long-term memory form a
region of direct access. This region approximates

Running Span

Total R2=.58

Figure 7. Venn diagram displaying unique and shared contributions of the scope of attention, control of attention, and running
span to predicting Gf in Data Set B. VAz is a z-score composite of the three visual array set sizes. CSz a z-score composite of

operation and symmetry span.
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Cowan’s (2001) focus of attention. WM capacity,
however, is not simply the number of bindings
that can be simultaneously maintained, but rather
is driven by an individual’s ability to both estab-
lish and break bindings. Complex span tasks may
thus provide a measure of the efficacy with which
this process is carried out, while visual arrays
reflect some form of absolute capacity (e.g.,
number of bindings).

Selective attention as a common
mechanism

The relationship between complex span perfor-
mance and selective attention is well established
(Kane et al., 2007). The presently employed visual
arrays task, on the other hand, does not have an
intuitively obvious component of controlled at-
tention: This task does not require selection of
specific information or suppression of prepotent
responses. Rather, performance appears to reflect
the amount of information a person can simulta-
neously maintain.

Fukuda and Vogel (2009, 2011), however, have
demonstrated that individual differences in visual
arrays predict individual differences in attention
capture effects. Specifically, although WM capa-
city does not predict susceptibility to capture by
response-compatible distraction, visual arrays
performance does predict the rate at which a
person disengages attention from distraction and
reorients to critical information.

This finding comports with attention research
conducted using the complex span task. For
instance, Heitz and Engle (2007) attribute WM-
related differences on flanker tasks (e.g., which
way is the middle arrow pointing?: —» - « > —)
to the rate at which attention is constrained to
exclude distraction. Additionally, performance on
the anti-saccade task, which requires test-takers
to rapidly look away from a peripheral flash, is
predicted by complex span performance (Kane
et al., 2001; Unsworth et al., 2004). Interestingly, a
person cannot perform this task without first
noting the location of distracting information.
Efficient performance thus requires a process of
disengagement and reorientation, as described by
Fukuda and Vogel (2009, 2011).

It might be reasonably argued that the rela-
tionship between visual arrays and controlled
attention is mediated by a common relationship
to WM as measured by complex span perfor-

mance. The available literature cannot yet
address this question. However, there are propo-
sals that allow for a direct relationship between
visual arrays and attention. Cusack, Lehman,
Veldsman, and Mitchell (2009) hypothesise that
visual arrays does not reflect temporary storage,
per se, but storage that has been constrained by
attention to allow for stable memory of a few
items, rather than fragile memory for many items.
Wheeler and Treisman (2002), on the other hand,
propose that accurate memory in the visual arrays
requires attention to bind features together (e.g.,
colour and location). In either case, memory
limitations may be a product of attentional
limitations.

Retrieval from secondary memory as a
common mechanism

Although visual arrays performance is often
interpreted as reflecting a person’s capacity for
multi-item storage (e.g., Cowan et al.,, 2005;
Fukuda et al., 2010; Vogel & Machizawa, 2004),
there are contradictory data. For instance,
Makovski and Jiang (2008) demonstrated that
participants experience difficulty detecting col-
our-changes when a visual arrays task is designed
such that target objects occupy the same spatial
location on multiple trials. In particular this
occurs when an object on trial #» changes to match
the colour of the respective object from trial
n—1. This implies the presence of proactive
interference: Placing items in the same spatial
location across trials apparently increases the
difficulty involved in discriminating between
critical information from the most recent trial
and irrelevant information from older trials. This
would be expected to arise during a search of
secondary memory.

Furthermore, Shipstead and Engle (2012) have
demonstrated that visual arrays performance is
subject to manipulations of temporal discrimin-
ability (Baddeley, 1976; Glenberg & Swanson,
1986; Neath, 1998; Neill, Valdes, Terry, & Gorfein,
1992). That is, when two trials occur in rapid
succession (relative to other trials), estimates of
attentional capacity decrease. When two trials are
separated in time (relative to other trials), esti-
mates of focal attention increase. In other words
the scope of a person’s attention is subject to the
difficulty involved in cuing a specific period of
time. Temporally compressing two trials increases
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proactive interference and thus less information
can be retrieved into focal attention. On the other
hand, temporally separating two trials decreases
proactive interference and more information can
thus be retrieved into focal attention.

We thus assume that controlled retrieval into
the focus of attention is among the processes that
mediate the relationship between visual arrays
and complex span. From the perspective of
Oberauer’s (2002; Oberauer et al., 2007) con-
centric model of WM capacity this interpretation
simply requires an assumption that controlled
retrieval is one of the mechanisms through which
the region of direct access is maintained.

However, it can be argued that the manipula-
tions of Makovski and Jiang (2008) and Shipstead
and Engle (2012) do not act on secondary
memory retrieval, but rather interfere with a
person’s ability to effectively maintain the region
of direct access. Although this second interpreta-
tion is parsimonious, it is contradicted by a recent
study (Lin & Luck, 2012) that concluded inter-
ference effects are not present in the visual arrays
task when brief encoding and retention intervals
are used. That is, interference was not present in a
situation in which the updating of bindings would
ostensibly be most difficult.

Lin and Luck (2012) propose that focal WM
functions in at least two stages. The first is a stable
memory representation similar to that proposed
by Cowan (2001) and Luck and Vogel (1997).
Given a long enough interval (unspecified, but
greater than 1 second), secondary memory repre-
sentations consolidate and begin to affect perfor-
mance. However, regardless of explanation, it is
clear that further research is needed in order to
clarify the contribution that retrieval makes
to visual arrays performance and, by extension,
to the measurable capacity of focal attention.

Memory-related considerations

Although we have largely focused on the aspects
of attention that are present in WM tasks, it
is important to consider the differential demands
that visual arrays and complex span make on
memory. Visual arrays require a test-taker to
process and retain information that is presented
in parallel. As a consequence, information is
ordered spatially, rather than temporally. Span
tasks, on the other hand, present information
sequentially. Accurate recall is not a simple
matter of remembering which items were pre-
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sented, but also recalling their relative position in
time. Thus it is entirely possible that the differ-
ence between visual arrays and complex span
tasks largely represents a difference of spatial/
temporal organization (e.g., McElree & Dosher,
2001), while the common variance represents a
WM system that is important to both types of
memory demand.

Additionally, because the visual arrays task
does not contain a processing component, one
may argue that it is a measure of visuo-spatial
short-term memory, rather than WM capacity.
One method for exploring this question involves
redefining Gf to be biased towards the visuo-
spatial or verbal modalities and examining
changes to the relationship between VA and Gf.
By the logic of Kane et al. (2004) a visuo-spatial
short-term memory task should be most strongly
related to Gf when the Gf factor is composed of
reasoning tasks that have strong visual compo-
nents and most weakly related when Gf is
composed of tasks with weak visual components.
A modality-free WM component, on the other
hand, would be unaffected by these changes.

Figure 5 provides relevant information. In
Data Set A, Gf is defined by two tasks with
strong visuo-spatial components (RAPM and
PapFold) and two tasks with relatively weak
visuo-spatial components (LettSet and NumSer).
Data Set B, on the other hand does not include
PapFold, and thus the Gf factor is likely biased
towards the verbal/numerical dimension. Despite
this change, the relationship of VA to Gf is
numerically stable at .22 to .23.

Taking this logic one step further, we redefined
Gfin Data Set A as RAPM and PapFold. Thus Gf
now had a strong bias towards the visuo-spatial
dimension. This resulted in a slight increase in the
regression path between VA and Gf (.27) and a
slight decrease in the regression path between CS
and Gf (.63). Next we redefined Gf as LettSet and
NumSer. Under these circumstances, the regres-
sion path between VA and Gf dropped slightly
(.18) and the path between CS and Gf again
showed a slight decline (.63).

These analyses suggest that VA is more sensi-
tive to extreme changes in the modality of Gf
tasks than is CS. This may be evidence of a visuo-
spatial short term memory component in the
visual arrays task. However, we also note that a
similar analysis by Kane et al. (2004) resulted in a
total path change of .25 between a factor com-
posed of visuo-spatial simple span tasks (i.e., a
more traditional measure of short-term memory)
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and Gf. In the present analysis the total change in
the relationship between VA and Gf was a
relatively small .09. Moreover, in all analyses
the correlation between VA and CS remained
stable at .61. Thus, regardless of how Gf was
defined, VA’s relationship to reasoning was lar-
gely expressed through the modality-free CS
variable. While, we concede that VA may have a
stronger short-term memory component than CS,
this factor also reflects general WM capacity (e.g.,
Saults & Cowan, 2007).

Limitations and further directions

These analyses are only preliminary steps towards
understanding the relationship between WM-
related attentional maintenance and WM-related
attentional control. As such, limitations are pre-
sent and will need to be addressed by future
research.

Critically, the two WM factors were created
using one type of task each (i.e., visual arrays and
complex span). The strength of this type of
analysis is that it allows us to interpret the nature
of the latent factors on the basis of previous
research (Kane et al., 2004). The shortcoming of
this approach is that aspects of the tasks that are
not critical to WM are likely present, and thus
generality of the factors is limited (Oberauer
et al., 2007). For instance, complex span tasks
require dual-task performance. However, the
analyses using the running memory span (see
also Broadway & Engle, 2010) indicate that dual-
task performance is not a necessary component.
Thus future research will need to (a) uncover a
greater variety of tasks that converge on the scope
and control of WM-related attention and (b) apply
these tasks to latent-level analysis in order to
improve the fidelity and generalisability of results.

Related to this concern, the CS factor was
created using multiple types of complex span task,
while only one type of visual arrays task was used
to define VA. Thus this latter factor likely
includes a relatively high proportion of task-
specific variance (e.g., memoranda, type of
change detection performed), which may reduce
the generality of the path from VA to Gf in our
SEMs. This is a serious concern and future studies
will need to define VA via a broader range of
change-detection tasks.

That said, several pieces of evidence justify our
treatment of the different set sizes as separate
tasks. First, while the matrices in Table 2 indicate

that the visual arrays tasks had stronger inter-
correlations than many of the complex span tasks,
these correlations were far from unity. Although a
given set size was a good predictor of the others,
no two shared more than 45% of their variance
(i.e., squared correlations).

Building off this point, examination of the
factor loadings on Figures 3 and S reveals that
VA was no more strongly related to each visual
arrays set size than the CS was to each complex
span task. This again suggests that, despite strong
similarities between each set size, there were also
substantial differences that were eliminated by
the factor analysis.

Finally, we performed a series of simultaneous
regression with each set size predicting z-score
composites of the complex span and Gf tasks. As
can be seen in the Appendix, each set typically
predicted complex span and Gf above and beyond
the other set sizes. In other words the separate set
sizes have different implications for measurement
of WM and Gf. Our factor and composite scores
served to reduce these differences, thus allowing
for a more pure measure.

Thus while our present measurement of the
focus of attention is crude, it is obvious that the
different array sizes contain both shared and
unique variance. We postulate that the common
variance represents the scope of attention. While
further refinement may strengthen the regression
path between VA and Gf (Figure 5), we assume
that this factor is what drives the relationships
between disparate visual-arrays-style change
detection tasks.

Negative K values

Table 1 reveals that some participants had sub-
stantially negative scores on the visual arrays task.
An obvious concern regards the possibility that
these participants had misunderstood the direc-
tions and reversed the keys they were using to
respond. We addressed this by examining nega-
tive scores at each set size for individual partici-
pants. Although a small number of participants
had negative k values at one or two set sizes, no
participant had negative values at all three. This
reduces concern that they did not understand the
response method.

Our own interpretation of this trend is that it is
a by-product of participants who have a true k
score at or near 0. These participants should be
prone to guessing, leading to positive values at
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some set sizes and negative values at others (e.g.,
regression to the mean). Indeed, when we aver-
aged k scores across set sizes, participants with
negative values at one or more set sizes became
much less extreme, ranging from —1.3 to +1.3.2

CONCLUDING REMARKS

The present investigation sought to address the
individual roles of the scope of attention (as
measured by the visual arrays task) and the
control of attention (as measured by complex
span task) in producing WM capacity. Further we
explored the unique relationships of each to Gf.
Two data sets confirmed that the visual arrays and
complex span tasks are best explained by sepa-
rate, but strongly correlated factors. Critically,
each of these factors proved meaningful to the
prediction of Gf.

Although we have argued that the scope of
attention is, to a degree, reliant on control
processes, we also note that it also uniquely
contributes to prediction of Gf. Thus, regardless
of whether focal attention is construed as stable
maintenance (e.g., Cowan, 2001) or a process of
continual retrieval (Jonides et al., 2008; McElree,
2006), the present data substantiate the view
individual differences in the amount of informa-
tion that people can “‘hold” in a readily accessible
state are meaningful. WM capacity, however,
should not be strictly conflated with these differ-
ences, or conceptualised as a capacity-bound
storage system. The processes that allow appro-
priate information to enter the focus of attention
clearly make the stronger contribution to higher-
order cognition.
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APPENDIX
Simultaneous regression of separate visual arrays set sizes on complex span and general
fluid intelligence

Data Set A
sz Gfz
Array size p p sr p p sr
4 .05 35 .04 18 .001 13
6 .36 <.001 26 .30 <.001 21
8 12 .01 .10 .08 .07 .07
Data Set B
csz Gtz
Array size s )4 sr s )4 sr
4 19 .03 14 27 .002 20
6 22 .02 .16 23 .01 .16
8 .26 .002 20 15 .06 12

CSz is a z-score composite of all complex span tasks used in a given data set. Gfz is a z-score composite of all general fluid
intelligence tasks used in a given data set.





