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Reaction time is believed to be a good indicator of the speed and efficiency of mental processes and is a
ubiquitous variable in the behavioral sciences. Despite this popularity, there are numerous issues associated
with using reaction time (RT), specifically in differential and developmental research. Here, we identify and
focus on two main problems—unreliability and sensitivity to speed–accuracy interactions. The use of
difference scores is a primary factor that leads to many RT measures having demonstrably low reliability, and
RT measures in general often do not properly account for speed–accuracy interactions. Both factors jeopardize
the validity and interpretability of results based on RT. Here, we evaluate conceptually and empirically how
these issues affect individual differences research. Although the empirical evidence we provide are primarily
within the domains of attention control and task switching, we highlight examples from various other areas
of psychological inquiry. We also discuss many of the statistical and methodological alternatives available to
researchers conducting correlational studies. Ultimately, we encourage researchers comparing individuals of
differing cognitive and developmental levels to strongly consider using these alternatives in lieu of RT,
specifically RT difference scores.

Public Significance Statement
This review identifies and discusses the problems with the use of RT, particularly RT differences, in
assessing how individuals differ from one another. Given these problems, a variety of conclusions
and theoretical accounts stemming from RTs in individual differences studies may be misinformed.
Examples include the efficacy of some clinical techniques, the measurement of racial bias, and the
measurement of attention.
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The distinction between differential and experimental psychology
is often underappreciated among behavioral researchers (see Cron-
bach, 1957). Differential research is mainly correlation-based and
investigates how people differ from one another (individual differ-
ences). In contrast, experimental research is primarily ANOVA-based
and investigates how the performance of groups or conditions vary
systematically, and causally, as a result of experimental manipulation.
Historically, these two approaches have been interested in many of the
same questions, but separately so, creating a clear divide as well as
confusion between researchers following the two different approaches.

Distinguishing between experimental and differential ap-
proaches is important for a variety of reasons. Foremost, the two
approaches have different concerns regarding the reliability of
their measures. An experimental effect is reliable to the extent that
it consistently replicates across studies and labs. However, a mea-
sure is reliable for differential purposes to the degree that it
consistently rank-orders individuals across measurements (cf.,
Hedge, Powell, & Sumner, 2018). A helpful way to conceptualize
this is that experimental researchers are interested in maximizing
within-subjects variance, whereas differential researchers are in-
terested in maximizing between-subjects variance.1 Because of
this, measures can be reliable for one approach but not the other.
For an experimentalist, having 30 identical subjects would be

1 This characterization is true but somewhat misleading because experimen-
tal designs can involve either within-subjects contrasts, between-subjects con-
trasts, or both. The difference is that experiments treat subjects as being equal.
Even though experiments can be between-subjects designs with subjects
receiving different treatments, random assignment is used to mitigate the
effects of between-subject differences by distributing between-subjects vari-
ance in each group. This problem is avoided in within-subjects designs. But, in
differential research, subjects differing from one another is essential in max-
imizing variance and the strength of correlations. As such, experimental
psychologists seek to minimize between-subject variance to the extent possi-
ble, whereas differential researchers instead rely on this variance.
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perfectly fine, even desirable, if a robust effect emerged, whereas
a researcher interested in individual and developmental differences
would find those same data unusable.

It is not intuitive that performance on a well-established exper-
imental paradigm can reliably produce robust experimental effects
and yet fail to produce reliable and valid individual differences.
This phenomenon is becoming increasingly acknowledged in the
literature (e.g., Fisher, Medaglia, & Jeronimus, 2018; Hedge et al.,
2018; Hughes, Linck, Bowles, Koeth, & Bunting, 2014; Logie,
Della Sala, Laiacona, Chalmers, & Wynn, 1996; Paap & Sawi,
2016; Rey-Mermet, Gade, & Oberauer, 2018; Ross, Richler, &
Gauthier, 2015; Rouder & Haaf, 2018; Whitehead, Brewer, &
Blais, 2018). The findings of Logie et al. (1996) nicely illustrate
the difference between experimental and differential approaches.
In an experiment on the generalizability of visual word length and
phonological similarity in short-term memory, Logie et al. found
strong aggregate effects (group mean differences), which was
expected considering that these effects are robust in the literature.
However, in their first experiment (N � 251), only 57% of their
subjects showed all four effects of interest at the individual level.
Further, they retested 40 subjects in a second experiment and
found no statistically significant correlation between the initial test
and retest for three of the four effects of interest (r � .10), and only
a moderate correlation for the fourth effect (r � .31). As in,
whether a subject showed the effect in the initial test was not
predictive of that individual showing the effect in the retest ses-
sion. Crucially, the overall effects of interest still emerged at the
aggregate level, despite the poor test–retest reliability of the indi-
vidual scores. This is an important finding because it demonstrates
how experimental effects can be reliable at the group level, but at
the individual level they may not be, resulting in scores that
provide little information about that individual’s cognition.

Hedge et al. (2018) reasoned that popular experimental tasks
likely became popular for the very reason that makes them ill-
suited to individual differences—the minimization of between-
subjects variability. They highlighted several paradigms in cogni-
tive psychology impacted by the experimental versus differential
distinction, some of which we discuss in more detail in later
sections. Along these lines, Rouder and Haaf (2018) noted that
there are numerous reasons for individual differences researchers
to be confident in using established experimental tasks, such as the
repeated demonstrations of their robustness and internal validity,
and yet performance on these tasks often does not correlate as
expected.

Perhaps the hallmark example of a task being good in one
context but not the other is the color Stroop task (MacLeod, 1991;
Stroop, 1935). The color Stroop is a historic and useful task for
experimental researchers and the Stroop effect is one of the most
reliable effects in psychology. But, as noted by several researchers
(e.g., Hedge et al., 2018; Paap & Sawi, 2016; Rouder & Haaf,
2018), correlations involving Stroop performance are highly atten-
uated, and Stroop tasks seem particularly poor for assessing indi-
vidual differences.2

In this article, we more thoroughly discuss the psychometric and
measurement problems related to RT. We offer conceptual argu-
ments, supported by empirical evidence, to explain why RT, and
subtraction methodology (difference scores) in particular, are
problematic in differential and developmental contexts. After this
discussion we outline numerous alternatives that are available to

researchers. We ultimately conclude that researchers interested in
individual and developmental differences ought to strongly con-
sider using one of these alternatives instead of pure RT or RT
difference scores.

What Constitutes Acceptable Reliability?

There are multiple factors that determine whether a measure is
adequately reliable. These include the type of reliability estimate
used (see Carmines & Zeller, 1979),3 the reliability of alternative
measures, the ability, process, or attitude that is being measured,
the population of interest, the research question, and how the test
scores are to be used. Nunnally (1964) argued that .70 is a rough
minimum for exploratory research, but he recommended higher
thresholds for other purposes: .80 for basic research; .90 for
applied research; and .95 for high-stakes testing (testing with
consequences for the test-taker).4 A cursory Google search sug-
gested that these values are in line with other recommendations,
with most sources citing .80 as the minimum threshold for good
reliability of an ability test and .70 for a personality test (e.g.,
DeVellis, 1991). The takeaway here is not necessarily the specific
values, but that the intended application of the test along with the
reliability of available alternatives is critically important in assess-
ing reliability. Forays into new areas of research can be successful
with less reliable measures, whereas established fields of research
should have a higher standard, and instances of job selection, job
placement, legal matters, clinical diagnoses, college admissions,
and so forth ought to have the highest standards of all because of
the consequences for the respondent. Further, the construct in
question also requires consideration as to whether a measure has
acceptable reliability or not.

What constitutes acceptable reliability is therefore situational
and not straightforward. But, for purposes of discussing basic

2 It is important for the reader to keep in mind that reliability and validity
are not inherent properties of a task, but rather measures have a certain
reliability and validity for a specific purpose and in that context (e.g.,
Streiner & Norman, 1995). When we discuss some of the reliability and
validity concerns regarding many common reaction time measures, the
reader should not interpret this as an indictment of the task or paradigm as
a whole, but as a criticism of either the nature of the scoring, or the manner
in which the scores were used. For example, our concerns about the color
Stroop relate to research using interference effects for individual differ-
ences or differential purposes, but we do not question the utility of Stroop
tasks for experimental purposes.

3 Test–retest reliability and internal consistency are the types of reliabil-
ity relevant for our discussion. Test–retest reliability is assessed by corre-
lating performance on the same measure at two (or more) separate times.
Internal consistency involves correlating performance on individual items
with each other item (Cronbach’s Alpha; Cronbach, 1951) or correlating
performance on half of the items with performance on the other half (e.g.,
even-odd or first and second halves of the test), known as split-half.
Test–retest procedures result in lower estimates because numerous sources
of construct-irrelevant variance can be introduced, such as reactivity or the
respondent being in a different emotional or cognitive state during the
separate administrations. The ability or construct in question may even
change, meaning the true score is different for each administration. On the
other hand, internal consistency procedures produce inflated scores to the
extent that test items are similar to one another, and, because the test is only
administered once, state-dependent factors cannot be teased apart, as is
possible with test–retest.

4 Lance, Butts, and Michels (2006) argued that this .70 recommendation
for exploratory research has been taken out of context and improperly cited
as the threshold for acceptable reliability in general.
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individual differences research, we regard reliability estimates
below .70 as problematic, measures in the .70s as borderline, and
measures at or above .80 as acceptable.5 Although we use Nun-
nally’s (1964) standards as a guideline to help frame our discus-
sion of reliability, we emphasize that researchers must decide for
themselves what values are appropriate for their needs (cf., Trafi-
mow, 2015).

What Are Difference Scores?

Difference scores follow the subtraction methodology of Her-
mann von Helmholtz and Donders (1868/1969)—a subject’s per-
formance in one condition is subtracted from their performance in
another. They come in different forms and, based on their form and
application, are variously known as change scores, gain scores,
residualized scores, cost effects, congruence effects, discrepancy
effects, conflict effects, and/or interference effects.6 For instance,
a gain score is the difference of performance on the same test at
two different time points, and is often used to assess post-
intervention improvement. Whereas an interference or conflict
effect is the difference of performance on two different trial types
of the same task, typically with minimal temporal separation, and
is an indicator of the degree to which an individual is affected by
cognitive interference. An example would be congruent and in-
congruent trials of a Stroop task. Regardless of their form, differ-
ence scores all involve calculating a difference between a baseline
measure and a related measure of interest.

Difference Scores Are Ubiquitous in the
Behavioral Sciences

The appeal of using difference scores is clear. Early in their
careers, psychologists learn the importance of properly controlling
for irrelevant and error variance. Experimental psychologists iso-
late variance of interest through means such as random assign-
ment, active control groups, and effective experimental manipula-
tions. Difference scores are ostensibly a simple and effective
method of controlling irrelevant variance and isolating effects of
interest, and thus seem an improvement over a simple mean RT.

Difference scores are therefore used in numerous areas of sci-
entific inquiry and for a wide variety of research purposes. In
cognitive psychology, difference scores are common in the mea-
surement of executive functioning and frequently produce robust
experimental effects. Notable examples include the Stroop
(Stroop, 1935), Simon (Simon & Rudell, 1967), and flanker inter-
ference effects (Eriksen & Eriksen, 1974), as well as switch costs
in task-switching paradigms (Monsell, 2003), which all contrast
within-subject performance in two different but highly similar
conditions. Difference scores are common in assessing cognitive
control, for example with posterror slowing, which is the tendency
for an individual to respond more slowly on trials immediately
following an error trial (e.g., Dutilh et al., 2012; Rabbitt, 1966) and
sequential effects (how trial order affects performance; e.g.,
Whitehead et al., 2018). The Attention Network Test (Fan, Mc-
Candliss, Sommer, Raz, & Posner, 2002) produces three difference
scores purported to reflect three different components of attention,
and is widely used by cognitive neuroscientists and developmental
researchers (e.g., Callejas, Lupiàñez, Funes, & Tudela, 2005; Fu-
entes & Campoy, 2008; Konrad et al., 2005). Other areas of

cognitive psychology which use difference scores include the
assessment of face recognition and processing (DeGutis, Wilmer,
Mercado, & Cohan, 2013; Ross et al., 2015), assessment of se-
mantic priming effects (e.g., Sperber, McCauley, Ragain, & Weil,
1979), and sequential learning (Urry, Burns, & Baetu, 2015). In
psychiatry, body image dissatisfaction is measured with difference
scores (e.g., Cafri, van den Berg, & Brannick, 2010). In clinical
psychology, gain scores are among the most common ways to
assess therapeutic impact and treatment efficacy (Gottman &
Rushe, 1993; Steketee & Chambless, 1992). Gain scores are sim-
ilarly common in social psychology (e.g., Collins, 1996), one
example being the Implicit Association Test which uses difference
scores to assess implicit bias (Greenwald, McGhee, & Schwartz,
1998). Organizational behavior researchers and behavioral econo-
mists (see Edwards, 1994, 2001; Johns, 1981) frequently employ
gain and change scores, as do consumer researchers (see Peter,
Churchill, & Brown, 1993). Difference scores are commonly used
in survey research (e.g., Kessler, 1977). Finally, longitudinal in-
vestigations rely on difference scores to track the increase or
decrease of a variable of interest over time (see Rogosa, Brandt, &
Zimowski, 1982). This is by no means an exhaustive list, as any
investigator interested in measuring change is likely to consider
using a difference score in some form.

Subtraction methodology has undoubtedly been an invaluable
tool for researchers and has advanced the understanding of human
behavior. Here, we do not argue against the use of difference
scores entirely, but, rather, we express caution in their application
specifically in differential and developmental research. This is
especially true when tasks and paradigms that are highly reliable in
experimental studies are used without modification in differential
and/or developmental contexts, as investigators are likely to falsely
assume that the same measures that produce robust experimental
effects will also reliably rank-order subjects.

Conceptual Arguments Against Difference Scores

Understanding the problem with difference scores first requires
a discussion about the calculation of their reliability. The formula
for assessing reliability of difference scores is quite long (see
Cronbach & Furby, 1970), so, for ease of understanding, we
present the simplest formula (taken from Chiou & Spreng, 1996;
also see Guilford, 1954 and Lord, 1963), which is as follows:

�dd’ �
(�xx’ � �yy’) ⁄ 2��xy

1 � �xy

5 For reference, most of our accuracy-based measures of working mem-
ory capacity, fluid intelligence, and attention control produce scores with
internal consistencies in the .80–.90 range (see Table A1 in the Appendix),
with the complex span task partial scores being .77–.83 in terms of
test–retest reliability (see Redick et al., 2012). The lower reliability esti-
mates for absolute span scores (.63–.83 for internal consistency and .62–
.77 for test–retest reliability across two studies) is one of the reasons that
we have avoided assessing working memory capacity with absolute span
scores in recent years.

6 This is not an exhaustive list. Furthermore, nomenclature for types of
difference scores is not always consistent; some researchers may refer to
the same type of difference score by different names, or use the same label
for two conceptually different types of difference scores.
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�dd’ � estimated reliability of the difference score

�xx’ � estimated reliability of component score A

�xy’ � estimated reliability of component score B

�xy � correlation between the two component scores

To further aid the discussion, if we assume that the two component
scores have equal reliability, the formula becomes:

�dd’ �
�xx’ � �xy

1 � �xy

�dd’ � estimated reliability of the difference score

�xx’ � estimated reliability of the component scores (equal reliability
is assumed)

�xy � correlation between the two component scores

To unpack this formula, let us first look at two extreme cases.
The first is when each of the component scores is perfectly
reliable (�xx= � 1). In this hypothetical case, the resulting
difference score will be perfectly reliable because the numera-
tor and denominator will both be the same. The second case is
when the component scores are completely independent (�xy �
0). In this case, the resulting reliability of the difference score
will be equal to the reliability of the component scores (which
we assume to be equal here). Thus, if the component scores are
perfectly reliable, then so too will the difference score. And if
the component scores are completely independent, the differ-
ence score will be as reliable as the component measures. In
both of these instances there is no reason to be concerned about
the reliability of the difference score, at least any more than the
reliability of the components. However, these conditions are not

practical. Behavioral science measures are never perfectly re-
liable or completely independent. Further, a difference score
represents the difference between performance on two highly
related processes—it would be unclear how one would even
interpret a difference between two independent scores or why a
researcher would want to create a difference score under that
condition. So, ignoring the nonsensical cases of perfect reli-
ability or complete independence of the component scores,
difference scores are necessarily less reliable than their indi-
vidual components.

The primary issue is that as the correlation between the two
component scores increases, the reliability of the resulting differ-
ence score decreases. This is demonstrated in Figure 1 using
hypothetical data and reasonable assumptions about the reliability
of component scores. Importantly, when the correlation between
the component scores approaches ceiling the resulting difference
score is almost completely unreliable. For example: if mean RT on
the incongruent trials and congruent trials of a Stroop task have a
reliability of .90 and correlate with one another at r � .80, the
resulting RT interference effect (difference score) will only have a
.50 reliability. If the mean RT on the incongruent and congruent
trials of a Stroop task have a reliability of .80 and correlate with
one another at r � .70, the resulting difference score will have a
reliability of .33. Now we can begin to see why the Stroop effect,
while being universal and robust at the group level, typically has
low reliability and does not strongly correlate with other measures.

Conceptually, the lower reliability of difference scores is due to
the correlation between component scores subsuming the bulk of
their systematic (reliable) variance. When two variables correlate,
it means they share some amount of systematic variance. Because
this variance is common to both variables, subtracting one of these
variables from the other necessarily removes some of this system-

Figure 1. Projected difference score reliabilities (y axis) plotted as a function of the reliabilities of the
difference score components (r[xx] and r[yy]) and the correlation between component scores (x axis). r(xx) is
assumed to equal r(yy). More reliable components produce more reliable difference scores, but this reliability
diminishes as the correlation between component scores increases. The black dot depicts the in-text example of
a Stroop task with mean reaction time on incongruent and congruent trials having a .90 reliability and
correlations with one another at r � .80, resulting in a reaction time interference effect with a .50 reliability. The
bumps in the r(xx) � .70 and .80 lines at around .25–.30 on the y axis are an artifact from the smoothing
procedure and do not reflect any sudden change in the reliability of the difference score.
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atic variance. Subtraction therefore removes at least some system-
atic variance present in the two variables, and increases the pro-
portion of error variance in the resulting difference score (e.g.,
Cronbach & Furby, 1970; Hedge et al., 2018). For this reason,
difference score reliability is not a concern if the component scores
are perfectly reliable—the proportion of error variance cannot
increase if there is no error variance. Similarly, if the two compo-
nent scores are completely independent, there is no shared variance
between them to subtract out, and the resulting difference score is
therefore equally reliable as the components. As a consequence to
subtraction increasing the proportion of error variance, difference
scores are prone to unreliability and typically have weak associa-
tions with other variables.

Some researchers argue against the use of difference scores
entirely. Lord (1956) observed, “differences between scores tend
to be much more unreliable than the scores themselves,” (p. 429).
In a subsequent paper, he noted “the difference between two
fallible measures is frequently much more fallible than either,”
(Lord, 1963, p. 32) and that difference score procedures often
produce absurd results. Cronbach and Furby (1970) emphatically
stated:

[S]cores formed by subtracting pretest scores from posttest scores lead
to fallacious conclusions, primarily because such scores are system-
atically related to any random error of measurement. Although the
unsuitability of such scores has long been discussed, they are still
employed, even by some otherwise sophisticated investigators. (p. 68)

They also remarked, “It appears that investigators who ask
questions regarding gain scores would ordinarily be better advised
to frame their questions in other ways” (p. 81). Noting that differ-
ence scores are sometimes numerically reliable, Edwards (2001)
added that it is not a question of whether difference scores are
reliable absolutely, but whether they are more reliable than other
options. He concluded, “Moreover, adequate reliabilities do not
absolve difference scores of their other methodological problems,
and these problems are sufficient to proscribe the use of difference
scores regardless of the reliabilities they exhibit” (p. 267). More
recently and within the domain of executive functioning, Paap and
Sawi (2016) argued, “difference scores have low convergent va-
lidity that is partly caused by deficiencies in test–retest reliability”
(p. 81).7

Arguments in Favor of Difference Scores

As Collins (1996) attested, “there are few topics in social
science methodology that have elicited as much confusion, mis-
understanding, and anxiety as . . . gain scores” (as cited in Bez-
ruczko, Fatani, & Magari, 2016, p. 289). Yet, researchers contin-
ually employ difference scores, and some contend that their
methodological problems are exaggerated or misunderstood.

Tisak and Smith (1994a) judged difference scores to be an
acceptable dependent variable when the component scores are
reliable and are not highly correlated with each other. Zimmerman
and Williams (1982) argued that unequal variance and reliability
of the component scores is common, and that difference scores
often have perfectly acceptable reliability when this is the case.
However, they also conceded that, “It is undoubtedly true that
many gain scores and difference scores are unreliable” (p 67).
Chiou and Spreng (1996) similarly argued:

While researchers may need to be cautious about the reliability issues
of difference or gain score [sic] . . . in many practically possible
situations, difference scores can still be very reliable. The purported
unreliability of difference scores is partly due to unrealistic assump-
tions of the classical reliability formula. (p. 158)

Regarding Chiou and Spreng (1996) and Zimmerman and Wil-
liams (1982), it is important to again note that the formula we
provide for the calculation of difference score reliability assumes
equal reliability and variance of the component scores. This is
assumed because a difference score is typically a variable on the
same test measured either at two points in time (e.g., gain scores)
or in two different, but similar, conditions (e.g., incongruent and
congruent Stroop trials). The extent to which these assumptions do
not hold can impact the reliability, as Chiou and Spreng (1996) and
Zimmerman and Williams (1982) showed. Specifically, these re-
searchers acknowledged the legitimacy of concerns regarding dif-
ference score use, but they emphasized that equal reliability and
variance of component scores is not always tenable. When these
assumptions do not hold, a formula with additional terms is needed
to calculate difference score reliability (Equation 1 in Chiou &
Spreng, 1996), and difference scores can be shown to be somewhat
more reliable. Rogosa and Willett (1983) also explored how the
relationship between initial status and change affects the reliability
and appropriateness of difference scores. Like Chiou and Spreng,
they showed that unequal reliabilities between the component
scores can lead to a more reliable difference score. Relatedly,
Gollwitzer, Christ, and Lemmer (2014) argued that in pre- and
posttest treatment designs, variance is more likely to be different
across the two administrations (i.e., different standard deviations
of the component scores) due to differential treatment effects.

Another point of confusion regarding difference score use is the
counterintuitive finding that unreliable scores can be beneficial for
experimental researchers because the power of statistical tests is
actually increased when the reliability of the difference score is
low (and maximized when the reliability is zero; see Overall &
Woodward, 1975). Chiou and Spreng (1996) explained one way
this can happen:

If there is no treatment by subject interaction effect (every subject
shows the same true change), then based on the definition of the
reliability formula, the difference score will be very “unreliable” even
if the pretest and posttest score are reliably measured. This unreli-
ability is caused by the low variation of the difference score across
subjects. But not because of the measurement errors. Under this
situation, the difference score is just like a constant. It is not suitable
for correlation or LISREL analysis. This “unreliable” difference
score, however, can be very powerful in a statistical test for a main
effect (ANOVA or t test) for within group design as long as the pretest
and posttest score are reliably measured. (p. 164)

Finally, Trafimow (2015) argued that the observed correlation
between the two components of a difference score is affected by

7 There are additional considerations related to difference scores and the
measurement of change in general that we do not discuss here. For
instance, Sriram, Greenwald, and Nosek (2010) argue that factors which
influence reaction time in general (subject characteristics, task demands,
and the interaction between the two) cause correlations between reaction
time difference scores to be biased and difficult to interpret. Campbell and
Kenny (1999) discuss regression to the mean effects in measuring change.
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their true correlation and that the interaction between component
reliabilities with the true correlation largely determines the reli-
ability of the resulting difference score. When variances and reli-
abilities of the component measures are unequal, the interaction
between these variables gets more complex. He concluded:

Does it matter whether the difference scores are reliable? That de-
pends on one’s purpose. If the goal is simply to demonstrate that the
treatment works, lack of reliability of the difference scores likely will
not be fatal for the statistical test, as Thomas and Zumbo (2012)
showed. But if the goal is to correlate the difference scores with
another variable, then difference score reliability will matter a great
deal. (p. 10, emphasis added).

To sum, difference scores are contentious and statistically more
complex than at first glance. Psychometricians have historically
argued against their use from a mathematical perspective and
given a certain set of assumptions (e.g., Cronbach & Furby, 1970;
Lord, 1963). Others are not as categorically opposed to difference
scores and argue that these assumptions are not always tenable,
and that difference scores can be highly reliable in various situa-
tions (e.g., Tisak & Smith, 1994a; Zimmerman & Williams, 1982),
which researchers must assess on a case-by-case basis (Trafimow,
2015). Just as with reliability, the critical distinction is the intended
use of the difference score. Defenders of difference scores are
primarily concerned with their use in experimental designs. Their
position is that the experimental researcher should not be too
concerned about using difference scores so long as group differ-
ences consistently emerge. On the other hand, differential and
developmental researchers are not concerned with maximizing
statistical power for ANOVA and t tests, but rather in maximizing
reliable between-subjects variance. Difference scores are poorly
suited for this purpose. Our position is that the all-too-common
absence of a distinction made between experimental and differen-
tial approaches has largely contributed in the confusion and con-
tention regarding difference score use.

Empirical Assessment of Difference Score Reliability
in the Context of Individual Differences in

Executive Functioning

Given the conflicting views regarding difference scores, to what
extent should differential researchers be concerned about their
use? The research we discuss in the following sections suggests
that, at least in the context of assessing individual differences in
cognition, difference scores are better avoided.

Note that we limit this discussion to RT-based differences.
Accuracy-based difference scores are often less reliable than RT
ones because they suffer the same methodological problems of RT
difference scores but are also more susceptible to restricted vari-
ance and ceiling effects. But, we do not discuss accuracy-based
difference scores because (a) RT is a problematic variable for other
reasons than just in the form of a difference score (see the follow-
ing sections), and (b) accuracy-based difference scores are used
much less frequently than RT differences, at least in our area of
study. Many notable paradigms in psychology rely on RT differ-
ence scores, but we are aware of many fewer paradigms that both
utilize accuracy differences and are prevalent in individual differ-
ences research.

Although we only present examples from within cognitive psy-
chology, we refer readers interested in how difference scores may
affect other areas of research to the list we presented previously on
the ubiquity of difference scores. For examples of reviews and
controversies of difference scores in other fields, see Gottman and
Rushe (1993) for clinical psychology; Edwards (1994, 2001) for
organizational behavioral research; Collins (1996) and Gollwitzer
et al. (2014) for social psychology; Peter et al. (1993) for market-
ing research; Kessler (1977) for longitudinal survey research;
DeGutis et al. (2013) for individual differences in holistic face
processing; and Cafri et al. (2010) for psychiatric body image
work.

Paap and Sawi (2016) recently evaluated the test–retest reliabili-
ties of several popular executive functioning tasks that are predi-
cated on difference scores (N � 81 university students). The pure
RT (component score) reliabilities were generally quite high (.71–
.89), but the resulting cost scores and interference effects (differ-
ence scores) had test–retest reliabilities in the .43–.62 range, indi-
cating that roughly 50% of the variance in these difference scores
were unreliable across the two administrations.

Salthouse, Fristoe, McGuthry, and Hambrick (1998) investi-
gated the relationship between task switching, age, processing
speed, and fluid intelligence. In their first study (N � 100 under-
graduates), their three task switching measures had RT switch
costs with reported Spearman-Brown corrected split-half reliabil-
ity estimates of .71, .46, and .60 (Brown, 1910; Spearman, 1910).
Although these were somewhat more reliable than Paap and Sawi
(2016), this is to be expected because they are internal consistency
estimates as opposed to test–retest reliability. The baseline RTs
(component scores) had very high reliabilities ranging from .91–
.95, which also likely contributed to the difference scores being
more reliable (recall from the difference score reliability formula
that highly reliable component scores can lead to more reliable
difference scores). Their second study had older adults perform the
same switching tasks (N � 161 adults aged 18–80), and RT switch
costs on them had reliabilities of .38, .38, and .41. Baseline RT
(component scores) had very low reliabilities of .64, .50, and .36,
perhaps because of their inclusion of individuals in the 70–80 age
range.

Siegrist (1997) assessed the reliability of Stroop performance by
testing 45 undergraduate subjects on different variations of Stroop
trials: “XXXXX” strings, conflicting color words, three types of
self-relevant words, and two types of taboo words. The individual
composites had test–retest reliability estimates in the range of
.84–.91, but the resulting interference effects (difference score)
had test–retest reliabilities at .68, .09, �.12, and �.04. As a
correction, Siegrist subtracted only “XXXXX” trials from color,
taboo, and two types of self-relevant trials to produce interference
effects with estimated test–retest reliabilities of .68, .48, .53, and
.54, respectively. Siegrist concluded that these were all adequate
because they reached statistical significance. However statistical
significance is not sufficient to demonstrate acceptable reliability
(see Bonett, 2002; Nunnally & Bernstein, 1994; Schönbrodt &
Perugini, 2013), just as statistical significance does not demon-
strate the meaningfulness of an effect. Furthermore, his estimates
are likely inflated as he compared trial types that were not wholly
similar to one another (XXXXX trials from other types of trials),
resulting in weaker composite score correlations and slightly more
reliable, but less interpretable, interference effects. As such, Sieg-
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rist’s reliability estimates were in the upper range of what one
would expect with Stroop interference effects. Even with this
inflation, they still falls well short of Nunnally’s (1964) .80 rec-
ommendation for reliability in basic research.

Whitehead et al. (2018) assessed the reliability of congruency
effects in a color Stroop, Simon, and letter flanker task (roughly
200 subjects in each of three experiments). The sequential con-
gruency effect is the finding that interference effects (e.g., slowing
and reduced accuracy on incongruent trials of the Stroop as com-
pared to congruent trials) are smaller when preceded by another
trial of high interference (Gratton, Coles, & Donchin, 1992). As
such, an incongruent trial preceded by a congruent trial will
produce a larger interference effect than an incongruent trial pre-
ceded by another incongruent trial. Sequential congruency effects
are assessed with a difference between two interference effects—a
difference of two difference scores. Whitehead et al. (2018) report
that sequential congruency effects in each task had effectively no
reliability in any of the three experiments. Even–odd split half
estimates with Spearman-Brown correction ranged from �.07 to
.17. Because reliability constrains validity, performance on these
measures subsequently showed no statistically significant intercor-
relations. Yet, Whitehead et al. did find significant sequential
congruency effects at the group level. These results are similar to
those Logie et al. (1996) discussed previously and in line with
Overall and Woodward’s (1975) demonstration that statistical
power of ANOVA tests is increased in measures of low reliability.
Whitehead et al. also measured posterror slowing in these tasks
and reported higher reliabilities for posterror slowing (.47–.84,
with most measures being in the .60s), with posterror slowing
correlating across the three tasks (r � .29–.50). The finding
highlights that the problem of difference score reliability is com-
pounded when difference scores are taken of difference scores. It
also reinforces that robust experimental (group-level) effects do
not necessarily produce reliable individual differences. Finally,
this series of experiments also illustrates another important nuance
of the difference scores depending on one’s research question, they
may occasionally be useful even in individual differences studies.
Although only around 65% of the variance in posterror slowing
was reliable within each task, this was reliable enough for White-
head et al. to find that posterror slowing correlated across tasks and
thus was not task-specific. However, if Whitehead et al. were
concerned instead with the magnitude of the true correlation of
posterror slowing across tasks and not just the presence of this
association, then using difference scores with reliability in the .60s
would be a severe limitation.

Our research team typically uses the color Stroop and arrow
flanker tasks as attention control measures. In two recent large-
scale studies, RT on congruent and incongruent trials (54 trials for
each type) correlated at r � .86–.89 in the Stroop and .87–.88 in
the arrow flanker, resulting in difference scores with Spearman-
Brown corrected split-half coefficients below .70 in all cases. Data
from two task switching procedures showed a similar pattern of
high correlation between component scores (here switch and re-
peat trials), which resulted in marginally reliable difference scores
at .64 and .73. Comparing the difference score internal consisten-
cies to our accuracy-based executive functioning measures is strik-
ing, as difference score measures had demonstrably lower internal
consistency in both studies (see the Appendix).

The data outlined above show how component scores (e.g.,
incongruent and congruent trials in the Stroop) are typically highly
correlated and produce difference scores with much lower reliabil-
ity than the components themselves. Component measures for the
tasks used to assess executive attention and executive functioning
consistently correlate around r � .90, with the resulting difference
scores often having test–retest reliability and internal consistency
estimates below .70. Therefore, Tisak and Smith’s (1994a) argu-
ment that difference scores are not problematic given weakly
correlated components does not apply, as component scores gen-
erally correlate strongly.8

Importantly, these are not anomalous cases. Rather, these are
illustrative examples of the psychometric issues with many para-
digms relying on RT differences. And these are issues that other
researchers have acknowledged, both within the measurement of
attention and task switching (e.g., Friedman & Miyake, 2004;
Hughes et al., 2014; Rey-Mermet et al., 2018; Vandierendonck,
2017, 2018) as well as other areas and disciplines (e.g., Collins,
1996; DeGutis et al., 2013; Edwards & Parry, 1993; Gottman &
Rushe, 1993; Peter et al., 1993). Our position is that these mea-
surement issues stem from the use of RT scores, especially RT
differences, and that the problems with these scores in individual
differences contexts are pervasive throughout psychology and be-
havioral research more broadly. In the following sections, we
provide a more in depth discussion of these issues as they pertain
to specific areas of cognitive psychology.

Reaction Time Measures Are Sensitive to Speed–
Accuracy Relationships

So far, the issues we have discussed regarding RT have been
that RT differences scores do not produce reliable individual
differences. However, RT in general is a concern because it is
sensitive to speed–accuracy interactions that may differ across
ability and developmental levels.

Speed and accuracy can interact in a number of ways. Most
important for the present purposes, emphasizing one response
dimension (speed or accuracy) often results in a detriment for the
other, known as the speed–accuracy trade-off (see Heitz, 2014 for
a review). Speed–accuracy trade-offs are considered a nuisance
because researchers are typically interested in either error rates or
RT and assume the other is unimportant. This is a dangerous
assumption given that speed and accuracy are intimately connected
and not always in a predictable or obvious manner.

When a researcher employs a RT measure, they assume that all
differences in performance manifest through RT. For this assump-
tion to be valid, all respondents would have to emphasize speed

8 Wöstmann et al. (2013) reported internal consistencies and test–retest
reliabilities of numerous executive functioning measures such as the Er-
iksen flanker, Simon task, and Stroop task. Although some of their reli-
ability estimates were quite large (.53–.94 for the flanker interference
effect and .69–.89 for the Simon effect), we excluded their study from
discussion because it had a sample size of only 23, falling well below the
recommended minimum for assessing reliability (see Bonett, 2002; Nun-
nally & Bernstein, 1994; Schönbrodt & Perugini, 2013). We considered
removing any discussion of Siegrist (1997) for similar reasons; however,
the Siegrist data are informative because they show how comparing incon-
gruent and congruent trials from different tasks can produce more reliable
differences, but at the cost of interpretability.
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and accuracy to the same degree. To ensure this, subjects are
customarily instructed to, “Respond as quickly and accurately as
possible,” which, given the inverse speed–accuracy relationship, is
ambiguous and contradictory (see Edwards, 2001 and Heitz,
2014). Although instructions can be made clearer, respondents will
adopt different response criteria regardless of speed–accuracy in-
structions (e.g., Heitz, 2014; Lohman, 1989). Further, even suc-
cessful instruction may only result in a temporary behavioral
modification, as respondents generally revert back to their more
natural response tendencies after a short period of time (e.g.,
Schouten & Bekker, 1967). Individuals will continue to interpret
and respond to these instructions differently, and so instructions
alone are not sufficient to equate individuals in terms of speed–
accuracy tendencies. More to the point we wish to make, subjects
of different ability and developmental stages will likely respond
differently to these instructions.

Speed–accuracy interactions are a problem in differential and
developmental studies because minor variations in emphasis on
speed versus accuracy across subjects threaten the reliability
and validity of scores. RT measures are especially susceptible
because accuracy is often ignored altogether in RT analyses.
Some individuals will likely respond impulsively or slowly
regardless of instructions (see Starns & Ratcliff, 2010). Fur-
thermore, individuals of differing ability levels likely differen-
tially adjust speed and accuracy to meet task demands and
instructions. Higher ability individuals may slow down if they
notice they are making errors, whereas lower ability individuals
may not (e.g., Draheim, Hicks, & Engle, 2016). Complicating
matters further is that individual differences in speed–accuracy
adjustments can, but do not always, emerge. For instance,
Unsworth, Redick, Spillers, and Brewer (2012) report that
microadjustments (including posterror slowing) were present
across four different cognitive control tasks, but that these
microadjustments were not different across individuals of dif-
fering working memory capacity (perhaps because of the lim-
itations of difference scores in individual differences contexts).

An additional concern related to the speed–accuracy relation-
ship is that the tradeoff between the two is asymmetrical in that
sizable changes in RT will likely produce very minor, perhaps
even undetectable, changes in accuracy rates (Forstmann et al.,
2011; Pew, 1969). Forstmann et al. (2011) claim that, because
of their asymmetrical relationship, “traditional methods of in-
ference . . . may overlook the effects on accuracy and mistak-
enly conclude that speed–accuracy tradeoff differences do not
play a role” (p. 17242). The complex interplay between speed
and accuracy can thus lead to misleading conclusions in anal-
yses based solely on RT (see Draheim et al., 2016; Regev &
Meiran, 2014), and so speed–accuracy interactions are both
highly prevalent and highly problematic in differential research
involving RT. This is particularly true in studies with diverse
and heterogeneous samples, as is common in individual differ-
ences studies, developmental studies, aging studies, and clinical
research, in which there is a higher likelihood of finding indi-
vidual or group differences in speed–accuracy relationships.
For example, it has been repeatedly shown that older adults
consistently favor slow and accurate responding and are also
typically unwilling or unable to sacrifice accuracy for the sake
of speed regardless of practice, instruction, or incentives (e.g.,
Botwinick & Storandt, 1973; Brébion, 2001; Forstmann et al.,

2011; Hertzog, Vernon, & Rypma, 1993; Rabbitt, 1979; Salt-
house, 1979; Salthouse, 1996; Starns & Ratcliff, 2010). Aging
research has also revealed that trial-to-trial and day-to-day RT
variability is important in understanding cognitive processing,
and that individuals of differing abilities often show different
variability in RT (e.g.,Hertzog, Dixon, & Hultsch, 1992;
Hultsch, MacDonald, & Dixon, 2002; Rabbitt, Osman, Moore,
& Stollery, 2001). In particular, the slowest 10% or 20% of
trials is often more informative and indicative of ability than the
rest of the RT distribution. For this reason, some RT tasks are
scored as the average of an individual’s slowest N percentage of
trials instead of their mean RT across all trials (Dinges &
Powell, 1985; Unsworth & Robison, 2016). Aging researchers
thus have a heightened awareness of the potential issues with
assessing performance with RT, and how factors such as speed–
accuracy interactions and intraindividual variability need to be
addressed. Unfortunately, researchers in other areas of psychol-
ogy tend to be less cognizant and only consider these intricacies
when RT data yield unanticipated or null results.

To summarize, speed–accuracy interactions are important to
consider in differential and developmental research because such
studies, by design, involve the testing of subjects with a wider
array of ability levels—making the presence of differences in
speed–accuracy trade-offs and related strategies inevitable. And,
just like the researchers who argue against using RT difference
scores, some researchers argue that simple RT measures are inap-
propriate because of their susceptibility to speed–accuracy inter-
actions (e.g., Forstmann et al., 2011; Luce, 1986; Wickelgren,
1977). These researchers believe that speed–accuracy trade-offs
require consideration in most RT research, and they championed
techniques to more directly study speed–accuracy trade-offs. For
example, Luce (1986) stated:

[W]e face a very common problem in psychology: the existence of a
tradeoff between dependent variables, in this case false alarms and
RT. The only sensible long-term strategy is, in my opinion, to study
the tradeoff . . . and to devise some summary statistic to describe it.
(p. 56–57)

There is a large body of work devoted to doing just this, with the
systematic study of speed–accuracy trade-offs exploding in the
mid-to-late 1960s (e.g., Fitts, 1966; Ollman, 1966; Pachella &
Fisher, 1972; Pachella & Pew, 1968; Schouten & Bekker, 1967)
coinciding with the idea that a single summary statistic (e.g., RT)
is insufficient to measure cognitive processes. Wickelgren (1977)
in particular argued that methods of either separating or manipu-
lating speed–accuracy interactions are so superior to traditional RT
measures that cognitive psychologists should consider them the
default. We will briefly review some of these speed–accuracy
methods in our section dedicated to alternatives to RT, but we
direct interested readers to Heitz (2014) for a more extensive
review.

The Impurity of RT Correlations

Another consideration regarding comes from Miller and Ulrich
(2013). They argued that the cognitive processes underlying RTs
are more complicated than researchers typically assume, leading to
faulty interpretations of RT-based scores. They proposed a model
for predicting individual differences in mean RTs. The model
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consists of a series of task-specific information processing steps
assumed constant across individuals insofar as the same task
requires different individuals to execute the same amount of men-
tal work. Between-subjects variability is introduced via differences
in individuals’ abilities to efficiently complete said work. The
model is displayed below:

RTk � (A � B � C) � Gk � B � �k � Rk � Ek

Briefly, terms A, B, and C correspond to the amount of time
needed for different information processing stages required by a
task. Terms A and C correspond to perceptual input and motor
output stages, whereas term B represents task-central processes
such as decision making, response selection, and information
manipulation. The model’s other terms represent idiosyncratic
processing times, including general processing speed (Gk), pro-
cessing speed on the central task, that is, stage B (�k), residual
differences in speed unrelated to Gk or �k such as those associated
with stages A and C (Rk), and differences attributable to random
error (Ek).

The model and its variations have far-reaching implications for
interpreting RT reliabilities and correlations. Miller and Ulrich
(2013) reported that reliabilities for a simple mean RT should be
satisfactory given sufficient sample variation in any one of the G,
�, or R terms. However, their model suggests that strong reliability
estimates are of limited importance for interpreting RT scores,
because it is an open question as to which parameter(s) exert
influence on the reliability estimates, and to what extent. For
example, variation in the residual term R would yield reliable RT
scores. However, most research aims at understanding the central
processing stage, B, and would be most interested in variation in
the � term. A RT measure that is only reliable because of variation
in the R term would be of little interest to most investigators,
because it would be unlikely to correlate with other measures in
theoretically informative ways. In short, the process impurity of
RT measures is a major hindrance to their empirical and theoretical
utility. Paap and Sawi (2016) take a similar stance on this issue and
note the conundrum this creates for researchers: difference scores
are preferable to simple RTs because they partially mitigate the
impurity issue, but difference scores are notoriously unreliable and
not suited to individual differences studies.

Importantly, Miller and Ulrich’s (2013) model does not suggest
that correlations derived from RT measures will necessarily be
weak, but rather that these correlations are unlikely to be infor-
mative. Their model suggests that, if anything, simple RT corre-
lations are prone to inflation given that general processing time (G)
will be similar across a wide array of tasks. This becomes more
complicated when working with difference scores, in which the
problems with process impurity are compounded, and predicted
reliabilities and correlations can vary widely depending on the
relationship between a difference score’s components and their
idiosyncratic parameters. Miller and Ulrich (2013) thus concluded
that “there is a long way to go before it will be possible to draw
strong conclusions from the size or in some cases even the direc-
tion of a reaction time-based correlation” (p. 839) and that “rela-
tively sophisticated research strategies will be required to reach
strong conclusions from between-task correlations of mean reac-
tion times” (p. 840).

Validity Concerns of Reaction Time Measures

Reaction time is so prevalent in behavioral research that it is not
possible to discuss all the fields and paradigms affected by the
issues that we have discussed thus far. However, we have selected
a few areas within cognitive psychology in which RT differences
have led to controversial findings. Our position is that null and
inconsistent findings are primarily attributable to a combination of
the unreliability of RT difference scores, RT being sensitive to
speed–accuracy interactions, and, in some cases, the aforemen-
tioned issues raised by Miller and Ulrich (2013) regarding the
impurity of RT.

Task Switching

The relationship between task switching and working memory
has been a contentious topic recently and is a good example of how
the same difference score can be useful for experimental research-
ers but problematic for differential purposes.

Task switching is operationalized as the ability to flexibly and
fluidly switch attention and other cognitive resources from one
task to another to meet task demands (see Jersild, 1927; Monsell,
2003), and interest in it proliferated in the mid-1990s (e.g., Allport,
Styles, & Hsieh, 1994; Meiran, 1996; Rogers & Monsell, 1995).
Modern task switching paradigms are used to study cognitive
control and executive functioning (e.g., Altmann & Gray, 2008;
Miyake et al., 2000; Oberauer, Süß, Wilhelm, & Wittman, 2003).
As Logan (2004) proclaimed, “The ability to switch flexibly be-
tween tasks is the pinnacle of human cognition and the hallmark of
executive control” (p. 220).

A consistent finding from the task switching literature is that
individuals exhibit slower and more error-prone responses on trials
in which they must change their rules for responding (switch trials)
than for trials in which they do not (repeat or nonswitch trials).9 A
well-accepted theoretical account is that a memory representation
of the configuration of rules for performing each task (the task set)
must be maintained in a readily accessible form to be retrieved
when a switch is required. Rogers and Monsell (1995) argue that
switch costs arise due to a task set reconfiguration process on
switch trials, whereas Allport et al. (1994) argued that switch costs
reflect proactive interference from previously active and relevant
but now irrelevant task sets (for reviews, see Kiesel et al., 2010;
Monsell, 2003; Vandierendonck, Liefooghe, & Verbruggen,
2010). There is debate as to the extent to which working memory
is involved in task switching. Some researchers believe that work-
ing memory completely mediates task switching performance
(e.g., Mayr & Kliegl, 2000; Rubinstein, Meyer, & Evans, 2001),
but others implicate processes outside of working memory, such as
long-term memory (e.g., Allport et al., 1994; Logan & Gordon,
2001). However, both camps agree that working memory is a vital
process to switch between tasks (e.g., Mayr & Keele, 2000), and it
has been repeatedly demonstrated experimentally that switching

9 Task switching tasks usually involve a series of simple categorization
or judgment task with two potential options such as even/odd, large/small,
living/nonliving. A switch trial is one that requires the subject to make a
different judgment than previously, for example if an object is living/
nonliving whereas the previous trial required a large/small judgment. A
repeat trial is one that requires the subject to make the same judgment as
on the previous trial.
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between tasks taxes working memory (e.g., Baddeley, Chincotta,
& Adlam, 2001; Emerson & Miyake, 2003; Liefooghe, Barrouillet,
Vandierendonck, & Camos, 2008; Liefooghe, Vandierendonck,
Muyllaert, Verbruggen, & Vanneste, 2005).

Despite the theoretical acceptance and experimental support for
the relationship between task switching and working memory
capacity, several factor analytic studies have failed to find this
link. Notable studies include Miyake et al. (2000), Oberauer et al.
(2003), and data from our research team discussed in Draheim et
al. (2016). Oberauer et al. found little relationship between task
switching and working memory capacity and concluded:

Supervision, as operationalized by the task set switching variables,
was only weakly related to the other working memory functions. To
the extent that switching reflects a function of the central executive in
terms of Baddeley’s (1986) model, this implies that at least some
aspects of the central executive are not very central to working
memory. Our result is in accordance with Miyake et al. (2000) who
found little relationship between their mental set shifting factor and
standard measures of working memory capacity. (Oberauer et al.
(2003), pp. 189–190)

Our results were even more puzzling. We found a moderate
relationship between working memory capacity and task switch-
ing, but in the opposite direction predicted by theory—individuals
with higher working memory (and fluid intelligence) scores had
larger switch costs, suggesting that higher ability individuals were
worse than lower ability individuals at switching between tasks.

The failure to demonstrate a meaningful correlation between
working memory capacity and task switching suggests either that
the theory of at least one or both of the two abilities is flawed, or
that the measurement of at least one of the abilities is at issue.
Miyake et al. and Oberauer et al. argued that their results had
significant theoretical implications, but we attributed the results to
the measurement of task switching. These three studies employed
a wide array of task switching tasks, assessed working memory
capacity (and other executive functions) differently, and tested
very different populations. Yet they all failed to find the theoret-
ically predicted strong and positive relationship between task
switching and working memory capacity. Crucially, however, the
studies all assessed task switching using RT difference scores.
Given this commonality, the problems we discussed previously
with difference scores, and that experimental studies have demon-
strated a link between working memory and task switching, it is
our position that the measurement of task switching was the
issue.10

We found evidence for this position in a reanalysis of our data
and Oberauer et al.’s (2003) data using a measure that incorporates
both speed and accuracy, and with less dependence on differences
in RT (a binning procedure proposed by Hughes et al., 2014). The
reanalysis of Oberauer et al.’s (2003) data revealed a much stron-
ger relationship between task switching and working memory
capacity than was initially apparent, and this relationship mani-
fested at the individual task, the composite, and the latent levels.
When we applied the integrative speed–accuracy measure to our
own data, the weak-to-moderate negative relationship between the
two constructs we initially found when we assessed task switching
with RT switch costs became very strong and positive, on the order
of around r � .50 at the composite level. The reanalysis thus
supported prior theoretical and experimental work on the relation-

ship between task switching and working memory capacity,
whereas RT difference scores (or RT alone) revealed either null
results or results that contradicted theory.

Task switching is a prime example of how difference scores can
lead to confusion in correlational research, both because of the
unreliability of difference scores and differences in speed–
accuracy interactions across the cognitive ability spectrum. In
Draheim et al. (2016), individuals with higher working memory
scores tended to slow down after errors, as there was a significant
correlation between working memory capacity (and fluid intelli-
gence) and the extent to which an individual slowed down on a
trial immediately following an error. This finding illustrates the
danger in emphasizing results that are plagued with both unac-
counted speed–accuracy interactions and unreliable scores. The
interpretation of the data changed drastically when we accounted
for speed–accuracy interactions, in this case with an integrative
measure of speed and accuracy, and when we did not rely on
difference scores. The result was more sensible, in line with
established theoretical accounts of the constructs in question, and
compatible with the experimental literature. In the Alternatives
section, we provide a more detailed discussion of integrative speed
and accuracy measures.

Inhibition/Attention Control

Inhibition is an important component of executive functioning,
though researchers disagree substantially over its nature and mea-
surement (Logan, 1985). We regard true inhibition (i.e., the damp-
ening or suppression of irrelevant information to the benefit of
relevant information) to only exist in a few specific cases, such as
lateral inhibition in the retina (e.g., Cook & McReynolds, 1998),
but we acknowledge that many attention control tasks do require
some inhibition-like processes. For example, in the complex span
tasks, resisting proactive interference is a large determinant of
performance, especially in later trials (Engle, 2002). In fluid in-
telligence tasks, disengagement from previously tested hypotheses
results in better performance (Shipstead, Harrison, & Engle, 2016).
And, in the antisaccade, subjects must resist the ingrained prepo-
tent response to look toward the flickering distractor, as flicker
resembles evolutionarily important movement–things that move
may be able to eat you, or you may be able to eat them. The color
Stroop and arrow flanker tasks are also largely considered to
measure inhibitory processes. In the Stroop, subjects must resist
the automaticity of reading and respond instead to the color of ink
in which a word is presented. In a flanker task, respondents must
focus on a single central target among multiple distractors (e.g., a
central arrow pointing in the opposite direction of two flanking
arrows on either side; Friedman & Miyake, 2004; Miyake et al.,
2000; Rey-Mermet et al., 2018). It is likely that inhibition-like
processes are necessary to some degree in performing most exec-
utive functioning tasks. As this article is not a review on the theory
of inhibition and attention control, for the present purposes we
consider inhibition and attention control to refer to the same
concept.

10 To reiterate, our position is that the measurement of task switching is
problematic for differential research, but studies have consistently shown
switch costs to be very useful in experimental contexts.
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Issues with assessing individual differences using attention tasks
such as the Stroop and flanker are well documented. We report
data for the reliability and correlations among our working mem-
ory capacity, fluid intelligence, and attention control measures in
Tables A2 and A3 of the Appendix. When we assess working
memory capacity, fluid intelligence, and attention control, perfor-
mance on most tasks correlate with each other strongly (typically
r � .45–.60) except with the Stroop and flanker RT interference
effects, which correlate with other measures at r � .30 at the
strongest and, on average, around r � .20. Accuracy rates on the
antisaccade task, a hallmark measure of attention control (e.g.,
Hutton & Ettinger, 2006), consistently correlate to working mem-
ory capacity and fluid intelligence measures more strongly than
RT differences in the Stroop and flanker, despite consensus that
the Stroop and flanker tasks are also attention control/inhibition
measures and that antisaccade and Stroop tasks both require the
same process of resisting a prepotent response (e.g., Heitz &
Engle, 2007; Kane & Engle, 2003; Lavie, 1995; Miyake et al.,
2000; Rey-Mermet et al., 2018; Unsworth & Spillers, 2010). A
similar pattern emerges with performance on the visual arrays, a
change detection task with both attention control and capacity
requirements and an accuracy-based dependent variable (e.g.,
Luck & Vogel, 1997; Pashler, 1988; Redick et al., 2016; Shipstead
& Engle, 2013; Shipstead, Lindsey, Marshall, & Engle, 2014).
Specifically, visual arrays performance tends to correlate above
r � .40 with all other attention and working memory measures
except the Stroop and flanker RT interference effects (around r �
.20). It could be argued that this pattern of results is attributable to
the Stroop and flanker being the only tasks with a RT dependent
variable. However, the weakest correlation among all our variables
is typically between the Stroop and flanker effects at around r �
.10; around only 3% of the total variance in performance is shared
between them at the task level. Again, this is highly problematic
given that these tasks are believed to measure related aspects of
attention control (e.g., Friedman & Miyake, 2004) and have de-
pendent variables calculated in a similar manner. A much stronger
association between the two would therefore be expected. On the
other hand, high- and low-ability subjects (as indexed by working
memory capacity) do show marked differences in error rates on
these tasks, particularly on incongruent trials and in conditions
with large congruent/incongruent trial ratios (see Engle & Kane,
2004 and Kane & Engle, 2003). Given the storied history of the
Stroop being a classic experimental task that produces reliable and
robust experimental effects (see MacLeod, 1991), this finding
strongly indicates that the problem lies with the use of the Stroop
and flanker RT interference effects in correlational contexts, and
not necessarily with the Stroop or flanker paradigms in general.

Researchers are increasingly acknowledging the problems asso-
ciated with the measurement of attention control (e.g., Friedman &
Miyake, 2004; Hedge et al., 2018; Paap & Sawi, 2016; Rey-
Mermet et al., 2018; Rouder & Haaf, 2018). Friedman and Miyake
(2004) divided inhibition into three separate processes; inhibiting
a prepotent response (e.g., antisaccade and Stroop), resisting in-
terference from a distractor (e.g., flanker), and resisting proactive
interference (e.g., cued recall and the Brown-Peterson task, see
Kane & Engle, 2000) and tested 220 psychology undergraduates
on tasks falling within these categories. Most of their measures
were wholly unreliable. The resistance to proactive interference
measures were so unreliable that they excluded them from their

final analysis. First-order correlations among all measures were
quite low, with more nonsignificant correlations than significant.
Friedman and Miyake (2004) noted that difference scores likely
factored into the low reliability and weak correlations of the
measures. They also correctly stated that latent variable ap-
proaches can help correct for (but not absolve) this unreliability
because only reliable variance is partitioned, though such methods
are often impractical or even impossible because of their intense
time and resource requirements.11 Noting the psychometric issues
of inhibition tasks, Friedman and Miyake (2004) concluded:

One obvious solution to this problem is to develop new tasks that are
psychometrically reliable and more sensitive to individual variation in
inhibition-related processes. Although our strategy in the current
study was to focus on existing measures used in the field, it is
becoming increasingly clear that new measures are needed for the
field to make further progress. (p. 127, emphasis added)

Rey-Mermet et al. (2018) wrote that inhibition is an important
topic in the aging literature because hypothesized age-related def-
icits in inhibition appear inconsistently (see Verhaeghen, 2011).
Shadowing Friedman and Miyake (2004), they tested 130 young
adults and 159 older adults on a battery of 11 inhibition tasks
including two Stroop tasks, two flanker tasks, the Simon task, the
stop-signal task, and an adaptive antisaccade task. All of their
inhibition tasks were RT-based except for the antisaccade, and all
of the RT-based measures were difference scores except for the
stop-signal. The adjusted split-half internal consistency of their RT
inhibition measures ranged between .27 and .85, with all but two
(including the color Stroop) falling below .75 (see their Table 4),
and yet these low reliabilities were higher than those found in
many other studies. Their adaptive antisaccade task, on the other
hand, had an internal consistency of .97. Despite using tasks which
measure the same underlying ability, their 11 measures resulted in
only 13 of 45 (29%) first-order correlations reaching statistical
significance at the .05 level. Finally, they found low factor load-
ings for these tasks at the latent level.12 These results led Rey-
Mermet et al. (2018) to conclude:

So far, the evidence suggests that the tasks used to assess inhibition do
not measure a common underlying construct, but the highly task-
specific ability to resolve the interference arising in that task . . . an
inevitable implication of this conclusion is that studies using a single
laboratory paradigm for assessing or investigating inhibition do not
warrant generalization beyond the specific paradigm studied. (p. 515)

We agree with the sentiment that single tasks cannot properly
measure a construct, and that doing so limits generalizability. We
do not agree with Rey-Mermet et al. (2018) that their results
warrant sweeping substantive claims about the unity of inhibition
(attention control). Most of their inhibition tasks had low reliability

11 Even at the latent level, the relationship among the different processes
of inhibition were suspect. This helps demonstrate that using factor anal-
ysis and structural equation modeling does not excuse the use of unreliable
measures, as results can be unpredictable and untrustworthy, leading to
erroneous conclusions.

12 Note that their antisaccade task also had weak correlations and poor
factor loadings. We believe this to be because their antisaccade task was
adaptive such that presentation rates were different for each subject de-
pending on their performance during practice, resulting in less variability
in error rate.
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stemming from a reliance on RT differences, which is a common
issue in the measurement of inhibition. Their titular recommenda-
tion for researchers to stop thinking about inhibition as a general
construct fails to take these methodological issues into consider-
ation. It also ignores Friedman and Miyake’s (2004) advice to
create new tasks (presumably not based on difference scores)
before making such strong theoretical statements. As such, we
express caution in interpreting their results—as our position is that
their study is another example of psychometrically problematic
measures misinforming psychological theory.13

Despite the consistent finding that performance on many RT-
based attention tasks are unreliable and do not correlate with each
other or external variables, many of these, especially Stroop and
flanker tasks, see continued use in individual differences studies. A
large reason we have continued to use them is that the RT inter-
ference effects (difference scores) on the color Stroop and arrow
flanker cohere with error rates on the antisaccade to form an
attention control factor with strong loadings to other cognitive
constructs. However, the factor loadings for the Stroop and flanker
tend to be very small whereas the antisaccade loading tends to be
quite large (e.g., Kane et al., 2016; Miyake et al., 2000; Shipstead,
Harrison, & Engle, 2015). We often observe Stroop and flanker
performance (measured with RT difference scores) to have factor
loadings in the .20s and accuracy on the antisaccade to have
loadings in the .70s, indicating that our attention control factor is
primarily composed of variance from only the antisaccade task.
Rey-Mermet et al. (2018) similarly noted that inhibition factors are
often dominated by a single measure. They listed 23 experiments
across multiple labs that assessed attention control at the latent
level. They determined that 14 of these 23 experiments had an
attention task that “dominated” the factor (high factor loadings for
that one task and low loadings for the others). In nine of these 14
cases, that dominant task was a type of antisaccade task, and in
only one experiment did another task dominate the factor when an
antisaccade task was also part of that factor. In contrast, they listed
two studies by Chuderski (2014, 2015) that exclusively used
antisaccade tasks and had loadings at or above .80 for each of these
tasks.

With the noted issues regarding the measurement of attention
control and the idea that inhibition (attention control) may not be
a unitary concept gaining traction (e.g., Rey-Mermet et al., 2018;
Rouder & Haaf, 2018), it is important to keep in mind Friedman
and Miyake’s (2004) observation that new and improved tasks are
needed to make any significant theoretical advancements. Our
research team recently finished data collection for a study in which
we tested more than 400 individuals on a wide array of established,
modified, and new attention tasks (Draheim, Martin, Tsukahara,
Mashburn, & Engle, 2019). The results show that threshold ver-
sions of the Stroop and flanker and accuracy-based tasks consid-
erably improve the measurement of attention control over RT-
based ones (color Stroop, arrow flanker, psychomotor vigilance
task). Further, these data provide evidence that attention control is
indeed a unified concept—so long as it is not measured with RT or
difference scores.

Bilingualism

The role of lifelong bilingualism as the basis of enhanced
executive functioning is another area of contention. A substantial

body of work shows differences in performance in lifelong bilin-
guals compared to their monolingual peers, as well as neuropro-
tective benefits in older bilingual adults (Bialystok, 2017; Bia-
lystok, Craik, & Freedman, 2007; Bialystok & Viswanathan, 2009;
Luk, Bialystok, Craik, & Grady, 2011; see Li, Legault, & Litcof-
sky, 2014 for a review). However, some researchers consistently
fail to show these effects using RT measures, and consequently
argue that there is no executive function advantage from being
bilingual (Paap & Greenberg, 2013; Paap, Johnson, & Sawi,
2015).14 Moreover, the study of bilingualism is further compli-
cated by population differences in age of acquisition, manner of
acquisition, and a reliance on self-report regarding bilingual status.
Finally, the majority of these findings regarding the presence or
absence of a cognitive change related to bilingual status used
measures which rely on RT differences, likely impacting the
replicability of results (e.g., Paap & Sawi, 2014).

Weinreich (1953) introduced the idea that interference between
multiple languages occurs in bilingual individuals. He suggested
that the presence or activation of multiple languages results in the
need for bilingual individuals to resolve competition between
them. Weinreich also suggested that this effortful selection could
transfer generally to other cognitive processes. These suggestions
were later supported by work by Costa, Caramazza, and Sebastian-
Galles (2000) and Costa, Santesteban, and Ivanova (2006), who
showed language interference in very basic lexical tasks (see Kroll,
Dussias, Bice, & Perrotti, 2015).

Green (1998) proposed a theory for how this joint activation and
subsequent selection influences cognition. According to Green’s
inhibitory control model, a supervisory attention system guided by
top-down cues inhibits the nontarget language. Researchers rea-
soned that long-term use would strengthen these inhibitory pro-
cesses, thereby enhancing inhibitory control in other nonlinguistic
domains. This inhibitory account has been investigated extensively
and became the primary explanation of the impact of bilingualism
on cognition (Bialystok & Viswanathan, 2009; for a review see
Kroll, Gullifer, McClain, Rossi, & Martin, 2015). Besides provid-
ing a plausible explanation for how bilinguals avoid interference
between their multiple languages, the inhibition account was ap-
pealing because it accorded with contemporaneous advances in
executive functioning theory (Miyake et al., 2000).

Many studies on bilingual advantages have emphasized en-
hanced inhibition and/or switching abilities in bilingual individuals
(e.g., Bialystok & Viswanathan, 2009). Specifically, building on
Green’s (1998) inhibitory control theory, researchers frequently
proposed that both languages are held active and that the unse-
lected language was actively suppressed. This proposition has been
extended to executive functions more broadly and is supported by
bilingual individuals showing advantages in task switching (Costa

13 To be clear, we adjudge Rey-Mermet et al.’s conclusions to be correct
insofar as they are limited to the tasks they employed. Our stance, however,
is that better measures of inhibition would likely lead to much different,
and more optimistic, results.

14 Although there is heated debate about bilingual advantages in behav-
ioral studies, neuroimaging methodologies more consistently report struc-
tural and functional differences between the brains of bilingual and mono-
lingual individuals (Abutalebi & Green, 2016; Bialystok, 2017). However,
we remain agnostic to the argument over the existence and nature of
bilingual advantages and instead emphasize measurement problems which
may contribute to the discrepant findings.
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et al., 2000). However, suppression of the nontarget language is
not the only plausible explanation. Bialystok (1992, 2017) sug-
gests that bilingual individuals may not be suppressing the non-
target but are instead actively selecting the target language. This
view moves the study of bilingualism away from an executive
function approach toward an executive attention perspective more
similar to that of Engle (2002, 2018). Although the executive
function approach takes a more deconstructive approach in delin-
eating specific, isolable, functions of the central executive in the
working memory system, the executive attention perspective takes
a broader approach to individual differences in performance rooted
in the domain-general ability to control attention (Engle, 2002,
2018).

The debate in bilingualism research is intimately connected with
our previous discussion of the controversy surrounding task
switching measurement (e.g., Hughes et al., 2014) and inhibition
(Rey-Mermet et al., 2018). The executive functioning approach
has typically relied heavily on RT difference score measures
whereas the executive attention approach has adopted more reli-
able accuracy-based measures of attention control. The reliance on
unequally reliable measures between these two positions renders
comparison essentially impossible. We argue that RT difference
scores along with the interaction of speed–accuracy emphasis with
ability and developmental level may be partly to blame for the
conflicting conclusions regarding the existence and nature of en-
hanced cognitive functioning in bilinguals. Further, even if, as
some recent meta-analyses suggest (Donnelly, Brooks, & Homer,
2015; Lehtonen et al., 2018), the bilingual advantage is not a true
effect, adopting more psychometrically rigorous measures will
hasten the field toward sounder conclusions about this globally
important question.

Sequential Learning

The serial RT task is a simple respond-to-cue task that has
blocks with cues appearing randomly and other blocks with cues
appearing in a set sequence. Differences in RT on the random trials
versus sequence trials are widely used by cognitive and neurosci-
ence researchers to measure sequential learning. These differences
are believed to indicate whether the learning is implicit or explicit.
Because these RT difference scores rarely correlate to measures of
higher cognition, serial RT tasks are inferred to measure implicit
rather than explicit learning (Urry et al., 2015), as explicit learning
would be expected to correlate with cognitive ability (e.g., Un-
sworth & Engle, 2005). Some researchers have naturally raised
methodological concerns regarding this task because of the reli-
ance on RT difference scores (e.g., Howard & Howard, 1992;
Kaufman et al., 2010).

Urry et al. (2015) argued that difference scores on the serial RT
task are unreliable, susceptible to floor effects, and are a theoret-
ically inappropriate way to measure learning—particularly if ac-
curacy is not taken into consideration. They developed a new
sequential learning task designed to produce both RT and accuracy
dependent variables. They assessed performance on this task as
well as a traditional serial RT task (N � 99, undergraduates and
community members) using a RT difference score, a ratio RT
score (which reflects relative improvement in RT and purportedly
minimizes floor effects), mean accuracy rate, and a speed–
accuracy trade-off score representing a multiplicative combination

of speed and accuracy. The RT difference score failed to correlate
significantly with any of their five higher cognition measures (r �
.01–.17), including the Raven’s Advanced Progressive Matrices
(Raven, 1941). In contrast, the ratio RT correlated significantly to
four of the five (r � .19–.48). Furthermore, task performance, as
measured by either mean accuracy rate or with the speed–accuracy
score, correlated strongly to their higher cognition (r � .33–.62).
The accuracy measures also showed age-related decline whereas
the RT difference scores were smaller in older adults (suggesting
that older individuals were faster), a puzzling result because age-
related decline is expected in RT. Urry et al. argued that their
results demonstrate that accuracy-based measures are more appro-
priate for measuring sequential learning than the existing RT
methods. Their results are in line with our own findings in the
domains of attention control and task switching and the reader
should hopefully find them unsurprising given the discussion we
have laid out regarding the problems with RT.

The Implicit Association Test

The Implicit Association Test (Greenwald et al., 1998) was
designed to measure implicit biases, notably toward social groups,
and is a widely used measure in social cognition research (Devine,
Forscher, Austin, & Cox, 2012; Fridell, 2017; Jost et al., 2009;
Lane, Banaji, Nosek, & Greenwald, 2007). The task requires
subjects to categorize stimuli (e.g., words or images) into a cate-
gory comprising two other elements, often a social group and a
possible evaluation of that social group. For example, testing for
racial bias involves the respondent judging whether words and
pictures of faces are white or good or black or bad in one block,
and whether those same stimuli are black or good or white or bad
in a subsequent block. Implicit bias is inferred by subtracting RTs
from these blocks, as deviations from zero are assumed to reflect
differential semantic or evaluative associations between the cate-
gory components. For example, faster responses in white or good
blocks than black or good blocks indicates a stronger association
between “white” and “good” and an automatic preference for
white individuals over black (Jost et al., 2009; Lane et al., 2007;
but see Blanton & Jaccard, 2006).15

Policymakers and political researchers have suggested using the
Implicit Association Test as an indicator of various socially rele-
vant biases. It has been suggested as a screening tool for jury
selection (Larson, 2010), for gauging the risk of convicted sexual
predators’ recidivism (Nunes, Firestone, & Baldwin, 2007), and
for assessing racial biases in legislative decision making (Saujani,
2003). Blanton et al. (2009) claim that it is psychology’s most
popular export to both the social sciences and the law. The degree
to which the Implicit Association Test is utilized outside of basic
psychological research is difficult to determine. However, it seems
reasonable to conclude that implicit testing bias could become
more widespread given the substantial amount of attention the test
has garnered since its development along with the current political

15 In 2003, Greenwald, Nosek, & Banaji implemented a scoring proce-
dure meant to control for speed–accuracy interactions (Greenwald, Nosek,
& Banaji, 2003). The method is now standard. Hence, at this time we do
not regard such differences as significantly contributing to the Implicit
Association Test’s psychometric issues, but component scores remain
highly correlated, contributing to reliability concerns.
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climate. If implicit bias testing were to become popular, implicit
bias scores might be used to make judgments about individuals in
high-stakes legal situations, and for selection of individuals for
jobs and other positions.

Although the constructs that the Implicit Association Test pur-
port to measure are indeed pressing, some psychometric properties
of the task raise concerns for its applicability in individual differ-
ences contexts. In a review, Lane et al. (2007) report test–retest
reliabilities for different versions of the Implicit Association Test
ranging from as low as .25 to a maximum of .69, with a median of
.50. Gawronski, Morrison, Phills, and Galdi (2017) report moder-
ately high internal consistencies for a race and a self-concept
version of the task (Cronbach’s alphas of .69 and .87, respec-
tively), but also reported underwhelming test–retest reliabilities of
.44 for the race and .63 for the self-concept Implicit Association
Test.16 These estimates are similar to many of the other difference
score measures we have discussed so far, and, routinely fall below
Nunnally’s (1964) .80 guideline for basic research as well as his
.95 guideline for high-stakes situations.

Noting these measurement difficulties, Cunningham, Preacher,
and Banaji (2001) used a latent variable approach to measure
performance on the Implicit Association Test. Latent analyses
isolate reliable variance and could therefore be a way to circum-
vent the reliability issues of the Implicit Association Test at the
task-level. Their assessment likewise indicated that Implicit Asso-
ciation Test scores contain a large proportion of error variance.
Moreover, scores on the task did not strongly correlate over time,
even at the latent level.17 In their analysis on 93 undergraduates,
they found that only 46% of the reliable variance in their Implicit
Association Test scores was stable across four testing sessions and
that scores on the first two administrations, separated by only two
weeks in time, correlated at just r � .31. And although latent
variable analysis is better than simple correlational analysis and
may be one way to avoid some of the reliability issues with
differences scores (e.g., Gollwitzer et al., 2014), it requires a much
larger sample size, longer administration time per subject, and is
impractical in many situations (cf., Friedman & Miyake, 2004).
Further, those administering the test in applied scenarios may lack
the requisite resources or knowledge of latent variable methodol-
ogy to follow Cunningham et al.’s (2001) lead. Even if this were
not the case, the reliability concerns of the Implicit Associations
Test inspire little confidence in the veracity of results and conclu-
sions about any particular individual’s bias based on their scores.

In terms of validity, Blanton et al. (2009) argued that there is
little to no empirical evidence that the scores on the Implicit
Associations Test predict real-world behavior. According to them,
empirical validation studies are few and far between, and studies
which do claim to demonstrate validity at the individual level often
have some combination of small sample sizes, outliers driving the
effect, and/or conclusions that go beyond the reach of what their
analyses and methodology would permit. To that end, Blanton et
al. (2009) reanalyzed data on the only two studies they could find
that demonstrated the Implicit Associations Test’s ability to pre-
dict workplace discrimination (in actual or simulated environ-
ments). They found one to be dependent on outliers and the other
to have severe methodological flaws. In a more recent meta-
analytic review, Oswald, Mitchell, Blanton, Jaccard, and Tetlock
(2013) found that mean correlations between Implicit Association
Test scores and criterion measures of ethnic and racial discrimi-

nation to be r � .12–.15 in 46 published and unpublished studies.
They noted that these results were lower than the more optimistic
r � .20 - .24 reported by Greenwald, Poehlman, Uhlmann, and
Banaji (2009) in their meta-analysis based on fewer studies and
effects.18

To be clear, we are certainly not calling into question the
existence of implicit biases per se (cf., Jost et al., 2009), and a
discussion of the theoretical and societal concerns with bias goes
beyond the scope of this paper (see Blanton & Jaccard, 2006; Kang
& Banaji, 2006). Furthermore, we are not advocating that research-
ers discontinue using the Implicit Association Test. The Implicit
Association Test behaves in a theoretically predictable manner at
the group level, making it a very useful tool for experimental
purposes (e.g., Alkozei et al., 2017; Blanton et al., 2009; Cunning-
ham et al., 2001; Gawronski, 2002; Jost, 2018; Jost et al., 2009;
Lane et al., 2007). Evidence also suggests that it is the single best
measure of implicit attitudes currently available (Bar-Anan &
Nosek, 2014). With that said, the reliability of the Implicit Asso-
ciation Test scores for individual differences purposes is dubious
at best, and the correlations and effect sizes produced are generally
small and fragile (Blanton et al., 2009; Oswald et al., 2013). The
severity of these measurement deficiencies raises serious doubt
about the meaningfulness of individual scores on the Implicit
Association Test, even if robust effects emerge at the experimental
level. To put it another way, the Implicit Association Test is a great
tool for showing the existence of implicit bias and to study how
different contexts and manipulations affect its expression, but
caution should be exercised in interpreting or making conclusions
from any one individual’s particular score, especially if that score
is from a single administration. As such, there is a long way to go
in validating implicit bias assessments such as the Implicit Asso-
ciation Test before it should be endorsed in high-stakes situations,
and the suggestion that the Implicit Association Test be applied in
legal procedures and other important areas should be considered

16 The numerical value of reliability estimates for the Implicit Associa-
tion Test vary depending on the attitudes being measured.

17 Some researchers may object that low stability/test–retest reliability is
not an issue for tests that do not measure stable constructs, and that implicit
bias is a context-sensitive construct that may fluctuate wildly over time and
situations (e.g., Alkozei et al., 2017; Gawronski et al., 2017). Although we
acknowledge this point, it does not absolve the Implicit Association Test of
the measurement issues associated with difference score correlations. Fur-
ther, this illustrates the necessity for additional research and discussion
before the test is deemed suitable as an individual differences measure for
selection, placement, and legal settings. In other words, if implicit biases
are reasonably stable, then higher test–retest reliability would be expected
and the measure fails on this front. If implicit biases are not stable and do
indeed fluctuate with time and depending on context, then much care needs
to be taken in making high-impact decisions based on scores from a single
administration.

18 Note that low correlations involving the Implicit Associations Test
can have multiple causes. For instance, poor reliability or specification of
outcome measures would lead to low criterion validity of the Implicit
Associations Test scores but not reflect poorly on the test as a whole. And
though it is very possible that the outcome measures used to assess the
validity of implicit bias measures may be problematic as well, we have to
return to the consistent trend that all scores based on reaction time differ-
ence scores exhibit comparatively low correlations. As such, the simplest
explanation is that the reliability and validity of the Implicit Associations
Test raises concerns for its use in correlational settings.
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with great caution.19 Our recommendation is that the test not be
used outside of experimental research on implicit biases until
attempts to improve the Implicit Association Test’s psychometric
properties are proven successful (e.g., Nosek & Banaji, 2001). We
suspect that this will involve reducing the test’s reliance on RT
difference scores as well as stricter adherence to existing best
practices (e.g., basing interpretations on multiple administrations;
A. G. Greenwald, personal communication, June 4, 2018).

The Attention Network Test

Whereas some propose that the Implicit Association Test has
applications in various legal settings, the Attention Network Test
has been widely implemented in clinical and developmental re-
search. On the surface, much of this research has not been prob-
lematic from a psychometric standpoint because most studies
utilizing this task are examinations at the group level, and are not
correlational in nature. However, the prevalence and implications
of the Attention Network Test in neuropsychological and devel-
opmental studies warrants closer examination as, here too, differ-
ence scores for individuals yield problematic interpretations.

The Attention Network Test combines the Eriksen flanker task
and the Posner response time cueing task (Fan et al., 2002). Trials
begin with a central fixation and then a cue conveying either (a)
temporal information about when a series of arrows will appear,
(b) temporal information about when the arrows will appear and
spatial information about whether a central target arrow will ap-
pear above or below the central fixation, or (c) no cues whatsoever.
When the arrows appear, subjects must indicate whether the cen-
tral arrow in a series points left or right. The direction of this
central target can be either congruent or incongruent with the other
arrows in the series.

The combination of cues yields three difference scores that have
traditionally been interpreted as assessing three isolable attention
networks: the orienting, the alerting, and the executive attention
networks (Callejas et al., 2005; Fan et al., 2002; MacLeod et al.,
2010; Rueda et al., 2004). The scores for each network have
widely disparate reliability estimates. A recent meta-analysis on
RTs from 15 studies found Spearman-Brown corrected split-half
estimates of .38 for the alerting network, .55 for the orienting
network, and .81 for the executive network (MacLeod et al., 2010).
Another study administered two versions of the Attention Network
Test across 10 sessions and, according to a modified split-half
estimate, executive network scores were reliable (.86) after includ-
ing data from only two sessions whereas the alerting and orienting
network scores required data from many more sessions before their
reliability estimates reached significance (seven and 10 sessions,
respectively; Ishigami & Klein, 2010).20 Although the reliability
estimate for the executive network is larger than many other
difference scores we have discussed, the task’s overall reliability
remains underwhelming. As Ishigami and Klein (2010) conclude,
the Attention Network Test’s reliability “is generally lower than is
ideal for many purposes” (p. 127).

The children’s version of the Attention Network Test is more
concerning. Rueda et al. (2004) reported split-half reliabilities of
.59 for the executive network, .37 for the alerting network, and .02
for the orienting network. Ishigami and Klein (2010) administered
the child Attention Network Test across 10 sessions and, regard-
less of the number of sessions included in analyses, none of the

network scores were reliable according to a modified split-half
estimate. Furthermore, in many cases the network scores them-
selves were not statistically different from zero. Thus, the child
version of the Attention Network Test is a poor candidate for a
diagnostic tool or as a means of characterizing development lon-
gitudinally (e.g., Rueda et al., 2004; Suades-González et al., 2017).
Ishigami and Klein (2010) suggested that the test be avoided
altogether in research designs requiring multiple test administra-
tions or when researchers are interested in correlating the network
scores with another individual difference measure.

In addition to these reliability issues, the Attention Network Test
illustrates another danger associated with difference score mea-
sures: false equivalence of component scores. Galvao-Carmona et
al. (2014) contend that the cue conditions used to calculate the
alerting and orienting network scores are not comparable in ways
that researchers typically assume. To calculate the alerting network
score, mean RTs from a no-cue condition are subtracted from a
temporal cue condition.21 This subtraction has been assumed to
capture the difference between alert and not alert states, but
Galvao-Carmona et al. (2014) suggest that the anticipation of an
unknown event is a resource demanding process that slows re-
sponses in the no-cue condition. A subject in the no-cue condition
is anticipating a stimulus but does not know whether that stimulus
will require a response. Cued conditions remove this ambiguity:
after a cue appears, the subject knows that the next stimulus
presented will be a target that requires a response. The added
demand in the no-cue condition means that the two component
scores are difficult to compare and that it is not appropriate to
analyze their difference. Similar objections pertain to the orienting
network score. On temporally cued trials, subjects must monitor a
much greater surface area for the appearance of the target. Upon
the appearance of the target, they must also choose from a larger
set of possible responses than on spatially cued trials. That is, they
must either look up or down and then indicate whether the target
points left or right (four possible responses) whereas they must
only indicate whether targets point left or right on spatially cued
trials (two possible responses).

The most significant contribution of the Attention Network Task
to the psychological literature has been to demonstrate the relative
independence of the three attention networks, as shown by a lack
of significant correlations between the network scores (Fan et al.,
2002; Ishigami & Klein, 2010). However, given the low reliability
estimates of the alerting and orienting networks and the impurity
of difference score measures, a null correlation may not accurately

19 Only a select few endorse applied applications of the Implicit Asso-
ciations Test as most social psychologists likewise caution against such
uses.

20 In a version of the test developed by Callejas, Lupiàñez, Funes, and
Tudela (2005), an auditory rather than a visual cue conveys temporal
information. Ishigami & Klein (2010) found that this version had superior
psychometric properties to the original Attention Network Test, but was
still problematic. We omit further discussion of this variant for brevity.

21 In Fan et al. (2002), the alerting network score is calculated by
subtracting a double-cue condition (cues simultaneously appearing above
and below the fixation point where target arrows could appear) from the
no-cue condition. The orienting network score is calculated by subtracting
the spatial cuing condition from the central cuing condition (a cue replaces
the fixation point). In Galvao-Carmona et al. (2014), no double-cue con-
dition was used. We recognize this departure from established procedure,
but still regard their analyses as illustrative.
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reflect the attentional processes at play, but instead be due to
psychometric shortcomings of the task (Galvao-Carmona et al.,
2014; Miller & Ulrich, 2013; Redick & Engle, 2006). Thus,
conclusions drawn from Attention Network Test scores regarding
clinically relevant topics such as the efficacy of therapeutic and
pharmacological interventions (e.g., Murphy & Alexopoulos,
2006), the character of different disorders (e.g., Pacheco-Unguetti,
Acosta, Marqués, & Lupiañez, 2011; Urbanek et al., 2010), and
developmental trajectories (Suades-González et al., 2017) should
be interpreted cautiously.

Alternatives to Traditional RT and Difference
Score Measures

To this point, we have focused on the problems associated with
RT and RT difference scores, with the previous section devoted to
some areas within our field of study affected by said issues.
However, in this section we have a more optimistic tone and
outline several statistical and methodological alternatives for dif-
ferential, developmental, and applied practitioners to use. These
alternatives will have varying degrees of usefulness depending on
the investigator’s specific goals, but researchers interested in in-
dividual and developmental differences with either children or
older individuals ought to strongly consider these or other alter-
natives instead of either pure RT or RT difference scores.

Using Component Scores Instead of Difference Scores

An understandable approach to combating reliability concerns
of difference scores would be to use RT component scores (e.g.,
incongruent trials in the Stroop) instead. After all, simple RTs are
often highly reliable. Researchers have occasionally adopted this
approach with tasks such as the Stroop and noted some increments
in reliability and validity over difference scores (e.g., Kane et al.,
2016; McVay & Kane, 2012).

Using component scores instead of difference scores may be an
approach that works in some contexts. However, it is a dangerous
endeavor. Pure RTs are still highly sensitive to speed–accuracy
interactions, which would best be addressed with forethought
during the planning of the experimental design. Another issue with
using component scores is that they do not consider baseline
performance and so task purity may be compromised (e.g., Miller
& Ulrich, 2013). Difference scores are used to isolate cognitive
processes, combat the issue of task purity, and assess the efficacy
of treatments or interventions. In many instances it would be
ill-advised to use component scores instead. For instance, it is
difficult to conceptualize how one would assess post-treatment
improvement with only a single, non-comparative, score. In the
Stroop, it seems a great methodological undertaking to assess
interference on incongruent trials relative to congruent trials with-
out considering performance on both. In these instances, difference
scores are used to better ensure the variance in the dependent
variable is isolated to the process of interest. As such, using a
component score instead of a difference score requires a reframing
of the research question, employment of new measures or analy-
ses, or concession that the test score is likely reflecting different
processes.

Controls for the Speed–Accuracy Trade-Off

As noted previously, speed–accuracy trade-offs are a major
concern with RT research, especially in differential settings in
which respondents are likely to balance speed and accuracy dif-
ferently, thereby introducing error variance and contaminating
results. There have been various attempts at accounting for, con-
trolling, and directly studying speed–accuracy trade-offs to miti-
gate the potential negative impact it can have on RT data (see
Heitz, 2014 for a more thorough review).

One of the first efforts to quantify the speed–accuracy trade-off
comes from a class of mathematical models known as random
walk models (e.g., Fitts, 1966), and the diffusion model is likely
the most well-known and widely applied of such models to cog-
nitive tasks (Ratcliff, 1978; Ratcliff, Smith, & McKoon, 2015). In
these models, information is assumed to accumulate over time
until the subject has enough confidence to make a response.
Random walk models have parameters representing a subject’s
indecision time, rate of information accumulation, response bias,
and response threshold. The response threshold parameter is the
most relevant to speed–accuracy trade-offs, because it represents
precisely how much information needs to accumulate before a
subject initiates a response, and is thus a representation of their
speed–accuracy tendencies. But despite their appeal and ability to
answer important questions about cognition (see Starns & Ratcliff,
2010, for one example), these models see limited use and have not
been employed in large-scale correlational endeavors. This is
because the models are complex and require sophisticated code to
run (but see Wagenmakers, van der Maas, & Grasman, 2007), are
often applicable to only simple two-choice tasks, and can require
hundreds of trials to produce stable parameters depending on the
application, with some researchers opting for trial numbers in
the thousands (see Lerche, Voss, & Nagler, 2017). Ecological
validity is also a legitimate concern with these types of models.
Nevertheless, the diffusion model is part of a broader field of
research known as cognitive psychometrics, which uses cognitive
models for measurement purposes, such techniques sidestep issues
pertaining to speed–accuracy trade-offs in cognitive research (e.g.,
Wagenmakers et al., 2007).

Another way to study speed–accuracy trade-offs is with exper-
imental manipulations. These include, but are not limited to, verbal
instructions (Howell & Kreidler, 1963), response deadlines
(Pachella & Pew, 1968), and payoff matrices (Fitts, 1966). As
discussed earlier, instructions are less effective and thus less de-
sirable (e.g., Heitz, 2014), but payoff matrices and deadlines can
be effectively used to manipulate and study speed–accuracy ten-
dencies. Response deadlines can also be used to force quick
responding and thus response deadlines are commonly employed
in studies not specifically designed to assess speed–accuracy trade-
offs directly. The main problem with these experimental manipu-
lations, however, is that they generally require advanced knowl-
edge about the distributions of responses on the particular task. For
example, the researcher must know where to set the deadline and
how to structure the payoffs in order for the manipulation to work,
and there is a level of arbitrariness involved. And, just as with
diffusion modeling techniques, speed–accuracy manipulations of-
ten necessitate a larger number of trials. Nonetheless, these are
highly effective manipulations with a rich history in RT research.
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Finally, speed–accuracy trade-offs can be assessed with specific
analyses. The speed–accuracy trade-off function, the conditional
accuracy function, and the quantile-probability plot all depict
speed–accuracy trade-offs. Heitz (2014) describes these in detail,
and so we will not. The appeal of these methods is that they can be
done post hoc, with the caveat that they work best in experiments
containing multiple speed–accuracy conditions or manipulations
(such as response deadlines or payoff matrices).

Integrative Measures of RT and Accuracy

Recently, researchers have suggested that one solution to speed–
accuracy interactions is to meaningfully combine them into a
single metric (e.g., Draheim et al., 2016; Hughes et al., 2014;
Liesefeld, Fu, & Zimmer, 2015; Liesefeld & Janczyk, 2018; Vand-
ierendonck, 2017, 2018). Some benefits of such measures include
(a) greater sensitivity to speed–accuracy interactions, (b) to the
ability to measure performance on tasks traditionally measured
using difference scores, (c) the researcher does not have to choose
whether to use accuracy or RT as the dependent variable, (d)
integrative measures contain more information than RT and accu-
racy separately, and (e) they can correct for differential speed–
accuracy trade-offs. However, some drawbacks include (a) debate
over whether equal weighting of speed and accuracy is desirable
and how to achieve it, (b) integration of speed and accuracy into a
single metric will be likely be arbitrary because researchers must
decide to what extent speed versus accuracy contributes to the
score, (c) some of the integrations require specific circumstances
to be applicable, (d) data analysis becomes more complicated, and
(e) the resulting score might be difficult to interpret or even
meaningless in raw form.

Although integrative measures are not a recent development, a
recent push to use them came when Hughes et al. (2014) identified
the issues with using switch costs in task switching and assessed
how three different integrative measures could improve the mea-
surement of task switching. They analyzed task switching using
traditional RT and accuracy switch costs, the rate residual score
(number of correct responses per second; Woltz & Was, 2006), the
inverse efficiency score (RT divided by accuracy rate; Townsend
& Ashby, 1978), and their newly proposed binning procedure.22

They found all three measures to be an improvement to either RT-
or accuracy-based difference scores separately, and concluded that
the binning method was particularly promising.

Vandierendonck (2017) assessed seven integrative scoring tech-
niques for cognitive data, including multiple binning procedures,
the inverse efficiency score, the rate residual score, and his own
linear integrated speed–accuracy score. Vandierendonck’s primary
concern was whether the integrative measures retained the infor-
mation present in the individual RT and accuracy scores, and
whether the integrative measures accounted for a larger proportion
of variance than RT and accuracy considered separately. He was
highly critical of the Hughes et al. (2014) binning procedure
because of its elaborate and arbitrary calculation, the tendency to
emphasize accuracy more heavily than RT, and a potential lack of
independence between subjects (i.e., subject A’s performance has
an effect on subject B’s scores).23 He was most in favor of his own
integrated measure but adjudged the rate residual score to be a very
good measure and the inverse efficiency score to be trustworthy
but worse than these other two. In a follow-up, Vandierendonck

(2018) examined the rate residual, inverse efficiency, and his own
integrative measure in a set of 13 task-switching experiments. He
again determined that his own linear integrated speed–accuracy
score was valid, but he qualified his previous stance on the other
two, recommending that researchers avoid the rate residual score
altogether and to only use the inverse efficiency score on data sets
with low overall error rates.

In response to debate in the mental rotation literature of whether
objects are represented holistically or as a collection of its parts,
Liesefeld et al. (2015) argued that speed–accuracy trade-offs ex-
plained conflicting results among researchers and why some sub-
jects show effects of object complexity whereas others do not.
They developed another integrative speed–accuracy measure
called the balanced integration score to support their position.
Liesefeld and Janczyk (2018) further tested this score along with
the inverse efficiency score, rate-correct score, and Vandierendon-
ck’s (2017, 2018) linear-integrated speed–accuracy score.

As the name suggests, the appeal of the balanced integration
score is that it equally weights RT and error rates by standardizing
them into a z score and taking the difference between the two.
Liesefeld and Janczyk showed that the other integrative scores did
not achieve an equal balance of speed and accuracy like theirs
does. Further, the mean values of the other scores either increase
or decrease with differing speed–accuracy levels. In other words,
Liesefeld and Janczyk showed that their score was insensitive to
differing levels of speed–accuracy trade-offs whereas the other
scores fluctuate depending on a respondent’s location on the
speed–accuracy trade-off function. Whether insensitivity to speed–
accuracy trade-offs and equal weighting of speed and accuracy are
desirable properties is a matter of discussion that goes beyond the
scope of this paper. But it is noteworthy that the philosophy behind
the balanced integration score is quite different than Vandieren-
donck’s (2017, 2018) approach, which was instead to enlarge
existing RT and accuracy effects in the data and preserve, not
eliminate, speed–accuracy trade-offs.

For the present purposes, the problem with scores such as
Vandierendonck’s (2017, 2018) linear integrated measure and
Liesefeld and Janczyk’s (2018) balanced integrated measure is that
they were designed to address speed–accuracy trade-offs but not
reliability concerns of differences scores. Liesefeld and Janczyk’s
balanced integration score is a difference score, and thus reliability
and applicability in correlational research is a major concern just
as it is with any other difference score. Further, the balanced
integration score and Vandierendonck’s linear integrated speed–

22 In their binning procedure, the latency switch cost for each subject’s
accurate switch trial is rank-ordered from 1 to 10 (1 being the quickest)
across all subjects such that each subject’s accurate switch trial is assigned
a corresponding bin value ranging from 1–10 indicating how quick or slow
that trial was relative to both their baseline (repeat trial) reaction time and
relative to the reaction times of other subjects. Then, inaccurate switch
trials are assigned a bin value of 20. These values (1–10 or 20) are added
up to produce a final bin score that represents overall task performance for
that subject. See Hughes et al. (2014) or Vandierendonck (2017) for a more
thorough explanation.

23 Scores in the Hughes et al. (2014) binning procedure are not wholly
independent because one step involves rank ordering responses across all
respondents. It is therefore important to have a diverse and representative
sample when applying it to a dataset, which is true of individual differences
research in general. This does unfortunately mean that bin scores are not
comparable across samples.
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accuracy score are within-contrast comparisons in that they are
calculated separately for each type of trials. For instance, there is
one score for incongruent trials in the Stroop and a separate score
for congruent trials. How to combine these into a single score
without using subtraction methodology, resulting in yet another
difference score, is not clear. On the other hand, Hughes et al.’s
(2014) binning procedure arrives at a single score that incorporates
performance from both trial types and when considering both
speed and accuracy. And, although the binning procedure still uses
subtraction of the two trial types in the calculation, this calculation
is done on a trial-by-trial basis, preserving some variability and
leading to demonstrably higher reliability estimates than tradi-
tional difference scores (e.g., Draheim et al., 2016; Hughes et al.,
2014). These qualities make the binning procedure ideal for cor-
relational analyses provided sufficient sample size and with the
caveat that scores cannot be directly compared across data sets. As
such, Liesefeld and Janczyk’s and Vandierendonck’s integrative
measures are likely excellent tools for experimental researchers
seeking to account for speed–accuracy interactions, but their utility
as an alternative to difference scores for individual differences or
developmental contexts remains to be shown.24

Accuracy-Based Measures

Another obvious solution to the problems of RT-based measures
is to use raw accuracy or accuracy-based measures (capacity, d=,
proportion correct, etc.), as Urry et al. (2015) suggested for mea-
suring sequential learning. Although accuracy-based difference
scores usually have extremely low reliability (e.g., Hughes et al.,
2014) and are typically of little use to individual differences
researchers, pure accuracy measures are often very good for indi-
vidual differences, provided that subjects make sufficient errors on
the task. Accuracy-based measures thus require matching task
difficulty with ability level of the tested population (see below for
a discussion on adaptive measures).

It would be reasonable to assume that accuracy-based measures
suffer the same pitfalls as RT measures in terms of ignoring
speed–accuracy interactions. However, speed–accuracy interac-
tions are more easily accounted for when using accuracy. Reaction
time measures are problematic in part because they make it diffi-
cult for experimenters to influence participants’ accuracy levels.
Traditionally, participants are asked to respond as quickly and
accurately as possible, an ambiguous instruction because increases
in speed are made at the expense of accuracy, and vice versa. This
instruction also presupposes that subjects interpret instructions
correctly, similar to one another, and that individuals have an equal
ability to gauge the optimal speed–accuracy trade-off. In contrast,
many accuracy measures make RT more or less irrelevant by being
auto-paced and/or by permitting the subject take as much time as
needed to respond.

Antisaccade tasks are a good example of this and typically have
desirable psychometric properties. In a common version of this
task (Kane, Bleckley, Conway, & Engle, 2001), the subject either
properly inhibits their prepotent response to look toward the dis-
tractor (and can catch the target), or the distractor captures their
attention and they miss the target. Because the target is presented
for a fixed interval and their score is not contingent on responding
within a given timeframe, subjects can take as long as they like to
respond with minimal effect on accuracy. In that way, we describe

this task as RT-irrelevant. Recall that Paap and Sawi (2016)
designed a RT analog to the antisaccade and found that the
resulting difference score had poor test–retest reliability, whereas
performance in the accuracy version is highly reliable, correlates
very strongly to other measures of executive functioning, and loads
strongly onto a factor comprised of other attention control mea-
sures (e.g., Kane et al., 2001; Shipstead et al., 2015; also see Table
A1 in the Appendix). Paap and Sawi’s finding is thus a rather
convincing display of how the same paradigm can be reliable and
valid when scored with accuracy but problematic when assessed
using RT difference scores.

Other examples of RT-irrelevant measures that we use include
fluid intelligence tests and complex span tasks. Subjects are per-
mitted sufficient time to answer questions without feeling rushed
as the time limit is imposed on the task as a whole, and not for
individual items. Furthermore, these tasks begin with easy ques-
tions and progressively increase in difficulty, and so subjects
generally receive questions of difficulty that exceeds their ability
level before time becomes a factor. Our complex span measures of
working memory capacity have a response deadline for the pro-
cessing (distractor) trials that is adaptive for each subject based on
their RT on practice trials. In addition, the storage trials are
auto-paced and task instructions specifically instruct the subject to
take as long as necessary to respond to the recall screen at the end
of each set—an improvement to the customary and contradictory
“respond as quickly and accurately as possible” instructions.

Because speeded response are not as integral to performing well
on the antisaccade, complex span, and fluid intelligence tasks, one
component of the speed–accuracy issue is essentially rendered
irrelevant. It is therefore not surprising that these accuracy-based
measures consistently produce reliable dependent variables with
high convergent and predictive validity. For example, accuracy
rates in the fluid intelligence, working memory capacity, and
antisaccade tasks we use can correlate to other measures as
strongly as r � .60, whereas we rarely encounter RT-based mea-
sures with correlations exceeding r � .30 (and they are typically at
or below r � .20). Such tasks also either control or account for RT
such that speeded responses are not integral to performing the task.
Accuracy-based measures can thus circumvent many of the issues
with RT.

Signal Detection Theory

Signal detection theory is another method with a rich history in
experimental psychology (Green & Swets, 1966; Stanislaw &
Todorov, 1999) in which patterns are deconstructed into two
components—signal and noise. Detection theory is therefore used
in studies in which subjects needs to discriminate between two

24 It has never been our position that the binning procedure proposed by
Hughes et al. (2014) is a perfect integrative measure. Instead, in Draheim
et al. (2016) we wanted to illuminate the problems with using reaction time
and difference score measures to assess task switching and to determine
whether any integrative measure could effectively be used to correct for
these problems. In confirming this, we hoped more researchers would
become aware of these techniques and continue to test and develop them,
just as Vandierendonck (2017, 2018) and Liesefeld and Janczyk (2018)
did. Furthermore, we only recommend using binning procedures in differ-
ential research, with a large sample size, a diverse population, and while
also considering accuracy and reaction time independently. In other situ-
ations we recommend using another alternative.
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types of stimuli. Just as with diffusion modeling, numerous pa-
rameters can be obtained using signal detection theory, and it is
possible to disentangle speed and accuracy. The most well-known
parameter is the sensitivity index (d=), which is the mean separa-
tion of the noise versus signal distributions for a subject.

In an unpublished guide to signal detection analysis for individ-
ual differences research, Paulhus and Petrusic (2010) noted some
complications in using detection theory to assess individual dif-
ferences. They also claimed that it had received only little attention
among differential researchers except in a few notable excep-
tions—such as in personality research (Danzinger & Larsen,
1989), clinical psychology debates concerning defense mecha-
nisms, education research concerning the relationship between
reading frequency and cognition, in the assessment of psychomet-
rics of standardized tests, and fleetingly in memory research in the
debate over distinct types of memory. Paulhus and Petrusic argued
that the use of signal detection theory in these cases were conten-
tious but often an improvement over existing methods. As such,
there seems to be some potential in using signal detection and d=
as an alternative to RT for assessing individual differences, but
such an application has been employed only sparingly.

Adaptive or Threshold Tasks

Adaptive procedures are common in standardized testing (Way
et al., 2010), and threshold procedures are frequently used in
psychophysics (Leek, 2001). In general, these tasks involve ad-
ministering different items or trials to subjects based on their
individual performance such that the task becomes more or less
challenging to better match their ability level. Threshold tasks are
a type of adaptive task that converge upon a specific value or score
for the test-taker. For example, how similar two tones must be in
frequency for the subject to respond at a 75% accuracy rate, or at
what stimulus presentation rate the subject is 50% accurate.

There are numerous benefits to adaptive and threshold proce-
dures. First, they have desirable psychometric properties because
item difficulty is better matched to subject ability level, which is an
improvement to administering the same trials to all subjects and
taking an aggregate score. Because of this added precision, thresh-
old tasks can take less time to administer and without compromis-
ing reliability or validity. Many traditional tasks can be modified
to be adaptive and give more reliable estimates, including tasks
that otherwise would rely on RT and/or difference scores. Finally,
using adaptive procedures can serve as an effective control for
either accuracy or RT, as they can be programmed to converge on
a threshold at a certain accuracy rate. There are also some notable
downsides. Similar to speed-accuracy manipulations, adaptive pro-
cedures involve some level of arbitrariness and decision points,
and require foreknowledge of response distributions for the in-
tended population. Further, the adaptive procedure needs to be
thoroughly piloted, as a poorly calibrated task will likely produce
meaningless scores for a variety of reasons. Another consideration
is that respondents are administered qualitatively different trials,
which can complicate comparison. As mentioned in a previous
section, our research team is currently exploring using threshold
tasks as a replacement for the traditional Stroop and flanker tasks
and early results are promising. Further, we have begun using
adaptive sensory discrimination tasks to better understand the
relationship between general discrimination ability and intelli-

gence and to what extent attention control mediates this relation-
ship (Tsukahara, Harrison, Draheim, Martin, & Engle, 2019).

Reliable Components Analysis

Noting the issues with simple difference scores, Caruso (2004)
recommended using reliable component analysis instead. This
method is a differential weighting technique that attempts to max-
imize the reliability of the resulting composite (see Cliff & Caruso,
1998). Caruso reanalyzed data from five cognitive assessment
batteries using this procedure and reported reliabilities of .83–.91
across 14 subtests traditionally measured using difference scores.
These were significantly different from the reliabilities of the raw
difference scores (ranging from .70–.87). Caruso also noted: “The
adequate reliability of difference scores found here contradicts
conventional psychometric wisdom (e.g., Cattell, 1982; Cronbach
& Furby, 1970; Lord & Novick, 1968) and certain empirical
investigations (e.g., Malgady & Colon-Malgady, 1991; Williams,
Zimmerman, & Mazzagatti, 1987)” (p. 170). He attributed the
surprisingly high reliability of the difference scores to him having
selected the most popular assessment batteries for his analysis, and
that these measures are likely popular in part because of their
proven psychometric properties. Although the validity of scores
from reliable components analysis needs to be established, it
appears to be a procedure that can increase the reliability of
difference scores without requiring researchers to resort to alter-
native tasks.

Residualized Scores

Residualized scores involve rescaling performance on the out-
come or posttest measure (in longitudinal research) or on the more
demanding trial type (like incongruent Stroop trials). By regressing
outcome or incongruent trial performance on baseline trial perfor-
mance, the correlation between change and initial status is con-
trolled for and only variability not explained by baseline perfor-
mance is leftover (Castro-Schilo & Grimm, 2018). Residualized
scores have thus gathered some attention as an alternative to
difference scores. For instance, Steketee and Chambless (1992)
successfully championed their use in clinical psychology over
simple gain scores; similarly, Gollwitzer et al. (2014) argued for
their use in social psychology, Williams et al. (1987) found them
to be more reliable than difference scores, and Kane et al. (2016)
used residualized scores for some of their measures because they
performed better than traditional difference scores. Despite this,
reliabilities for Kane et al.’s measures were still suboptimal, as
they report reliabilities as low as .25 with the rest (except one) of
their residualized scores ranging from .48 to .59. Caruso (2004)
also calculated the reliabilities of residualized scores and similar
base-free difference scores in his assessment of cognitive batteries
and reports that the residualized scores have higher reliability than
simple difference scores. However, residualized scores were only
marginally more reliable than simple difference scores (and pos-
sibly not statistically significantly so, though no statistical test on
the difference between the two scores was reported), whereas their
reliable components analysis scores were much more reliable than
both difference scores and residualized scores.

Although residualized scores may have some improved reliabil-
ity over simple difference scores, these improvements are minor
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and residualized scores are still problematic in that they also
follow subtraction methodology. Therefore, residualized scores are
unlikely to perform markedly better than simple difference scores,
and methods such as reliable components analysis appear more
promising.

Polynomial Regression

Polynomial regression is another noteworthy alternative because
it sidesteps many of the reliability issues of difference scores while
being applicable to tasks that are traditionally measured by said
differences. It does so by using the intact components of a differ-
ence score to predict some variable of interest. Unlike other
regression procedures, predictor values are entered into the model
as linear terms but also as higher-order terms (i.e., x, x2, x3, etc.
may all be included in the regression model). Because the method
is not subtractive, reliable between-subjects variance is maintained
while also preserving what difference scores aim to measure, the
disparity between two theoretically interesting measures (Edwards,
2001; but see Tisak & Smith, 1994b). Moreover, polynomial
regression allows for more robust analyses than do traditional
difference scores. For example, Edwards (2001) argued that dif-
ference scores often implicitly contain untested hypotheses about
the relationships between component scores, whereas polynomial
regression allows such assumptions to be identified and tested.
Further, difference scores are limited in the relationships and
interactions between variables that they can convey because they
are a single score. Maintaining the component scores allows poly-
nomial regression to reveal interactions between the component
scores that may be of interest to researchers but that difference
scores can obscure (Cohen, Nahum-Shani, & Doveh, 2010; Ed-
wards, 2001; Edwards & Parry, 1993).

Given these advantages, it may seem surprising that polynomial
regression has not become a more popular method of measuring
congruence. This is likely because difference scores do hold some
noteworthy advantages, chiefly in terms of simplicity. Difference
scores are at least interpretable, even if inferences made from them
are suspect. On the other hand, even simple polynomial regression
models contain a large number of coefficients, which are daunting
for researchers to interpret—and this complexity has been a nota-
ble criticism of polynomial regression (Cohen et al., 2010; Ed-
wards, 2001). Similar to diffusion modeling, complexity and un-
familiarity are likely major deterrents for many researchers (but
see Edwards & Parry, 1993, for a method to make polynomial
regression more palatable). Further, polynomial regression has
seldom been used outside of organizational research and its im-
plementation for studying individual differences in executive func-
tioning would be novel. As such, the efficacy for these purposes is
an empirical question that has not been answered. Additionally, as
with all regression procedures, multicollinearity (interdependence
among predictor variables) is a concern with polynomial regres-
sion. Multicollinearity can result in wildly inaccurate parameter
estimates (Edwards, 2001) and biased/unstable standard errors
leading to unstable p values for predictors (Vatcheva, Lee, Mc-
Cormick, & Rahbar, 2016). However, in research scenarios in
which multicollinearity is not a concern, polynomial regression is
a potentially fruitful alternative to difference scores.

Hierarchical Modeling

Rouder and Haaf (2018) recently provided their own perspective
on the reason well-established experimental tasks are often poor
individual differences measures. They argued that the problem lies
with the portability—a basic property of classical test theory that
underlying population values of a test are invariant to sample size
(number of subjects and number of trials per task). They argued
that that the use of aggregate scores violates portability and makes
it such that reliability, correlations across tasks, and within-task
effect sizes become functions of a researcher’s sample size, result-
ing in different estimates of these values based on differences in
samples. According to them, the common practice of aggregating
trial performance into a single score for a respondent violated
portability and is problematic because trial-by-trial variation con-
taminates the aggregate score. They argued using hierarchical
linear modeling of individual trial-level data can correct for this
trial-by-trial noise and thus preserve portability (see their paper for
a description of their model).

Rouder and Haaf (2018) focused on the problem with individual
differences in attention control. Of particular interest was the
well-established lack of correlation between RT interference ef-
fects in the color Stroop and arrow flanker tasks. They retested
data from Hedge et al. (2018) to investigate whether this lack of
correlation is attributable to substantive reasons, such as inhibition
not being a unified construct (e.g., Rey-Mermet et al., 2018) or, as
we have argued, methodological considerations, such as reliability
and other measurement issues (e.g., Hedge et al., 2018). They
found that, even with the use of hierarchical modeling to correct
for trial-level variation, Stroop and flanker performance did not
correlate. They interpreted this as substantive evidence against
inhibition as a unified concept (similar to Rey-Mermet et al.,
2018), but they also stated statistical and methodological factors
were still at play—specifically their suspicion that true individual
variation may be much lower than believed.

Of note is that Rouder and Haaf (2018) still analyzed RT. Their
concern was not with RT or difference scores as measures of
performance, but rather trial-by-trial versus aggregate-level data.
If, as we argue, RT and difference scores are a problem, then even
advanced modeling may not be of much benefit to researchers.
However, as with polynomial regression, hierarchical modeling is
a promising method, with more work needed to understand its
usefulness in addressing issues with individual differences re-
search.

Conclusions

It is not necessarily the case that RT paradigms which reli-
ably produce robust experimental effects will also produce
reliable and valid individual differences. Although we agree
that each researcher ought to assess the reliability and appro-
priateness of a dependent variable for their own purposes, it has
been our experience that the cases in which RT difference
scores are psychometrically justifiable given the available al-
ternatives are the exception and not the norm. This is attribut-
able to RT difference scores being necessarily less reliable than
their component scores, often leading to demonstrably unreli-
able dependent variables. Although we focus heavily on these
issues as they relate to difference scores, pure RT measures are
still problematic for their susceptibility to speed–accuracy in-
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teractions and because of the complexity of the processes
underlying RT. These issues are magnified in individual differ-
ences and developmental studies, meaning that RT measures are
particularly problematic in these settings.

The problems we outlined here are prevalent in many areas of
scientific inquiry, both within and outside of psychology. Our
position is that these problems have stifled theoretical advance-
ments and led to both controversial and flawed conclusions in
numerous fields of behavioral research. We strongly urge re-
searchers to critically examine their own RT variables and
assess the extent to which these scores may be negatively
influencing their own results and conclusions. Additionally, we
urge anyone interested in basic individual differences research,
developmental differences, clinical assessments, job selection,
and other applied work to consider using alternative measures
to avoid the methodological problems with RTs, particularly RT
difference scores. A good alternative is accuracy-based mea-
sures in which RT is either controlled for or irrelevant. Another
alternative is adaptive tasks which determine an individual’s
threshold for the ability or construct in question. We advocate
for the continued use and exploration of integrative measures
that combine speed and accuracy in a meaningful and, ideally,
interpretable manner. Finally, we hope to see a rise in cognitive
modeling for differential research, as such models have the
potential to combat the known issues with using RT. A move
away from RT in differential research is long overdue, and the
scientific study of behavior will benefit from such a paradigm
shift. At the very least, we hope that our efforts, along with the
efforts of other researcher, to bring this discussion to a broader
audience will lead to improved awareness and help facilitate
discourse regarding how best to address these pressing issues.
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Callejas, A., Lupiàñez, J., Funes, M. J., & Tudela, P. (2005). Modulations
among the alerting, orienting and executive control networks. Experi-
mental Brain Research, 167, 27–37. http://dx.doi.org/10.1007/s00221-
005-2365-z

Campbell, D. T., & Kenny, D. A. (1999). A primer on regression artifacts.
New York, NY: Guilford Press Publications.

Carmines, E. G., & Zeller, R. A. (1979). Reliability and validity assess-
ment. Thousand Oaks, CA: Sage. http://dx.doi.org/10.4135/
9781412985642

Caruso, J. C. (2004). A comparison of the reliabilities of four types of
difference scores for five cognitive assessment batteries. European Jour-
nal of Psychological Assessment, 20, 166–171. http://dx.doi.org/10
.1027/1015-5759.20.3.166

Castro-Schilo, L., & Grimm, K. J. (2018). Using residualized change
versus difference scores for longitudinal research. Journal of Social and
Personal Relationships, 35, 32–58. http://dx.doi.org/10.1177/
0265407517718387

Cattell, R. B. (1982). The inheritance of personality and ability: Research
methods and findings. New York, NY: Academic Press.

Chiou, J. S., & Spreng, R. A. (1996). The reliability of difference scores:
A re-examination. Journal of Consumer Satisfaction, Dissatisfaction &
Complaining Behavior, 9, 158–167.

Chuderski, A. (2014). The relational integration task explains fluid reason-
ing above and beyond other working memory tasks. Memory & Cogni-
tion, 42, 448–463. http://dx.doi.org/10.3758/s13421-013-0366-x

Chuderski, A. (2015). The broad factor of working memory is virtually
isomorphic to fluid intelligence tested under time pressure. Personality

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

528 DRAHEIM, MASHBURN, MARTIN, AND ENGLE

http://dx.doi.org/10.1017/S1366728916000225
http://dx.doi.org/10.1017/S1366728916000225
http://dx.doi.org/10.1038/s41598-017-04585-w
http://dx.doi.org/10.1038/s41598-017-04585-w
http://dx.doi.org/10.1037/0033-295X.115.3.602
http://dx.doi.org/10.1037/0033-295X.115.3.602
http://dx.doi.org/10.1037/0096-3445.130.4.641
http://dx.doi.org/10.1037/0096-3445.130.4.641
http://dx.doi.org/10.3758/s13428-013-0410-6
http://dx.doi.org/10.1177/2158244016659905
http://dx.doi.org/10.1177/2158244016659905
http://dx.doi.org/10.1016/S0166-4115%2808%2961513-7
http://dx.doi.org/10.1016/S0166-4115%2808%2961513-7
http://dx.doi.org/10.1037/bul0000099
http://dx.doi.org/10.1037/bul0000099
http://dx.doi.org/10.1016/j.neuropsychologia.2006.10.009
http://dx.doi.org/10.1016/j.cognition.2009.06.014
http://dx.doi.org/10.1037/0003-066X.61.1.27
http://dx.doi.org/10.1037/a0014665
http://dx.doi.org/10.3102/10769986027004335
http://dx.doi.org/10.2466/pms.1973.36.3c.1123
http://dx.doi.org/10.2466/pms.1973.36.3c.1123
http://dx.doi.org/10.1080/036107301750073999
http://dx.doi.org/10.1111/j.2044-8295.1910.tb00207.x
http://dx.doi.org/10.1111/j.2044-8295.1910.tb00207.x
http://dx.doi.org/10.1177/1073191109357028
http://dx.doi.org/10.1177/1073191109357028
http://dx.doi.org/10.1007/s00221-005-2365-z
http://dx.doi.org/10.1007/s00221-005-2365-z
http://dx.doi.org/10.4135/9781412985642
http://dx.doi.org/10.4135/9781412985642
http://dx.doi.org/10.1027/1015-5759.20.3.166
http://dx.doi.org/10.1027/1015-5759.20.3.166
http://dx.doi.org/10.1177/0265407517718387
http://dx.doi.org/10.1177/0265407517718387
http://dx.doi.org/10.3758/s13421-013-0366-x


and Individual Differences, 85, 98–104. http://dx.doi.org/10.1016/j.paid
.2015.04.046

Cliff, N., & Caruso, J. C. (1998). Reliable component analysis through
maximizing component reliability. Psychological Methods, 3, 291–308.
http://dx.doi.org/10.1037/1082-989X.3.3.291

Cohen, A., Nahum-Shani, I., & Doveh, E. (2010). Further insight and
additional inference methods for polynomial regression applied to the
analysis of congruence. Multivariate Behavioral Research, 45, 828–
852. http://dx.doi.org/10.1080/00273171.2010.519272

Collins, L. M. (1996). Is reliability obsolete? A commentary on “are simple
gain scores obsolete?” Applied Psychological Measurement, 20, 289–
292. http://dx.doi.org/10.1177/014662169602000308

Cook, P. B., & McReynolds, J. S. (1998). Lateral inhibition in the inner
retina is important for spatial tuning of ganglion cells. Nature Neuro-
science, 1, 714–719. http://dx.doi.org/10.1038/3714

Costa, A., Caramazza, A., & Sebastian-Galles, N. (2000). The cognate
facilitation effect: Implications for models of lexical access. Journal of
Experimental Psychology: Learning, Memory, and Cognition, 26, 1283–
1296. http://dx.doi.org/10.1037/0278-7393.26.5.1283

Costa, A., Santesteban, M., & Ivanova, I. (2006). How do highly proficient
bilinguals control their lexicalization process? Inhibitory and language-
specific selection mechanisms are both functional. Journal of Experi-
mental Psychology: Learning, Memory, and Cognition, 32, 1057–1074.
http://dx.doi.org/10.1037/0278-7393.32.5.1057

Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests.
Psychometrika, 16, 297–334. http://dx.doi.org/10.1007/BF02310555

Cronbach, L. J. (1957). The two disciplines of scientific psychology. American
Psychologist, 12, 671–684. http://dx.doi.org/10.1037/h0043943

Cronbach, L. J., & Furby, L. (1970). How should we measure
“change”—or should we? Psychological Bulletin, 74, 68–80. http://dx
.doi.org/10.1037/h0029382

Cunningham, W. A., Preacher, K. J., & Banaji, M. R. (2001). Implicit attitude
measures: Consistency, stability, and convergent validity. Psychological
Science, 12, 163–170. http://dx.doi.org/10.1111/1467-9280.00328

Danzinger, P. R., & Larsen, J. D. (1989). Personality dimensions and memory
as measured by signal detection. Personality and Individual Differences, 10,
809–811. http://dx.doi.org/10.1016/0191-8869(89)90131-1

DeGutis, J., Wilmer, J., Mercado, R. J., & Cohan, S. (2013). Using
regression to measure holistic face processing reveals a strong link with
face recognition ability. Cognition, 126, 87–100. http://dx.doi.org/10
.1016/j.cognition.2012.09.004

DeVellis, R. F. (1991). Scale development. Newbury Park, CA: Sage.
Devine, P. G., Forscher, P. S., Austin, A. J., & Cox, W. T. L. (2012).

Long-term reduction in implicit race bias: A prejudice habit-breaking
intervention. Journal of Experimental Social Psychology, 48, 1267–
1278. http://dx.doi.org/10.1016/j.jesp.2012.06.003

Dinges, D. F., & Powell, J. W. (1985). Microcomputer analyses of perfor-
mance on a portable, simple visual RT task during sustained operations.
Behavior Research Methods, Instruments, & Computers, 17, 652–655.
http://dx.doi.org/10.3758/BF03200977

Donders, F. C. (1969). Over de snelheid van psychische processen. [On the
speed of mental processes.] In W. G. Koster (Ed.), Attention and
performance II (W. G. Koster, Trans.; pp. 412–431). Amsterdam, the
Netherlands: North-Holland. (Original work published 1868)

Donnelly, S., Brooks, P. J., & Homer, B. D. (2015). Examining the
bilingual advantage on conflict resolution tasks: A meta-analysis. In
D. C. Noelle, R. Dale, A. S. Warlaumont, J. Yoshimi, T. Matlock, C. D.
Jennings, & P. P. Maglio (Eds.), Proceedings of the 37th Annual
Meeting of the Cognitive Science Society (pp. 596–601). Austin, TX:
Cognitive Science Society.

Draheim, C., Hicks, K. L., & Engle, R. W. (2016). Combining reaction
time and accuracy: The relationship between working memory capacity
and task switching as a case example. Perspectives on Psychological
Science, 11, 133–155. http://dx.doi.org/10.1177/1745691615596990

Draheim, C., Martin, J. D., Tsukahara, J. S., Mashburn, C. A., & Engle,
R. W. (2019). Accuracy based tasks measure attention control better
than reaction time-based ones: Evidence for the unity of inhibition.
Manuscript in preparation.

Dutilh, G., Vandekerckhove, J., Forstmann, B. U., Keuleers, E., Brysbaert,
M., & Wagenmakers, E. J. (2012). Testing theories of post-error slow-
ing. Attention, Perception, & Psychophysics, 74, 454–465. http://dx.doi
.org/10.3758/s13414-011-0243-2

Edwards, J. R. (1994). The study of congruence in organizational behavior
research: Critique and a proposed alternative. Organizational Behavior
and Human Decision Processes, 58, 51–100. http://dx.doi.org/10.1006/
obhd.1994.1029

Edwards, J. R. (2001). Ten difference score myths. Organizational Re-
search Methods, 4, 265–287. http://dx.doi.org/10.1177/109442810
143005

Edwards, J. R., & Parry, M. E. (1993). On the use of polynomial regression
equations as an alternative to difference scores in organizational re-
search. Academy of Management Journal, 36, 1577–1613.

Emerson, M. J., & Miyake, A. (2003). The role of inner speech in task
switching: A dual-task investigation. Journal of Memory and Language,
48, 148–168. http://dx.doi.org/10.1016/S0749-596X(02)00511-9

Engle, R. W. (2002). Working memory capacity as executive attention.
Current Directions in Psychological Science, 11, 19–23. http://dx.doi
.org/10.1111/1467-8721.00160

Engle, R. W. (2018). Working memory and executive attention: A revisit.
Perspectives on Psychological Science, 13, 190–193. http://dx.doi.org/
10.1177/1745691617720478

Engle, R. W., & Kane, M. J. (2004). Executive attention, working memory
capacity, and a two-factor theory of cognitive control. In B. Ross (Ed.),
The Psychology of learning and motivation (Vol. 44, pp. 145–199). New
York, NY: Elsevier.

Eriksen, B. A., & Eriksen, C. W. (1974). Effects of noise letters upon the
identification of a target letter in a nonsearch task. Perception & Psy-
chophysics, 16, 143–149. http://dx.doi.org/10.3758/BF03203267

Fan, J., McCandliss, B. D., Sommer, T., Raz, A., & Posner, M. I. (2002).
Testing the efficiency and independence of attentional networks. Journal
of Cognitive Neuroscience, 14, 340 –347. http://dx.doi.org/10.1162/
089892902317361886

Fisher, A. J., Medaglia, J. D., & Jeronimus, B. F. (2018). Lack of group-
to-individual generalizability is a threat to human subjects research.
Proceedings of the National Academy of Sciences, USA, 201711978.

Fitts, P. M. (1966). Cognitive aspects of information processing. 3. Set for
speed versus accuracy. Journal of Experimental Psychology, 71, 849–
857. http://dx.doi.org/10.1037/h0023232

Forstmann, B. U., Tittgemeyer, M., Wagenmakers, E.-J., Derrfuss, J.,
Imperati, D., & Brown, S. (2011). The speed–accuracy tradeoff in the
elderly brain: A structural model-based approach. The Journal of Neu-
roscience, 31, 17242–17249. http://dx.doi.org/10.1523/JNEUROSCI
.0309-11.2011

Fridell, L. A. (2017). The science of implicit bias and implications for
policing. In Producing bias-free policing: A science-based approach
(pp. 7–30). New York, NY: Springer. http://dx.doi.org/10.1007/978-3-
319-33175-1_2

Friedman, N. P., & Miyake, A. (2004). The relations among inhibition and
interference control functions: A latent-variable analysis. Journal of
Experimental Psychology: General, 133, 101–135. http://dx.doi.org/10
.1037/0096-3445.133.1.101

Fuentes, L. J., & Campoy, G. (2008). The time course of alerting effect
over orienting in the attention network test. Experimental Brain Re-
search, 185, 667–672. http://dx.doi.org/10.1007/s00221-007-1193-8

Galvao-Carmona, A., González-Rosa, J. J., Hidalgo-Muñoz, A. R.,
Páramo, D., Benítez, M. L., Izquierdo, G., & Vázquez-Marrufo, M.
(2014). Disentangling the attention network test: Behavioral, event re-

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

529REACTION TIME AND INDIVIDUAL DIFFERENCES

http://dx.doi.org/10.1016/j.paid.2015.04.046
http://dx.doi.org/10.1016/j.paid.2015.04.046
http://dx.doi.org/10.1037/1082-989X.3.3.291
http://dx.doi.org/10.1080/00273171.2010.519272
http://dx.doi.org/10.1177/014662169602000308
http://dx.doi.org/10.1038/3714
http://dx.doi.org/10.1037/0278-7393.26.5.1283
http://dx.doi.org/10.1037/0278-7393.32.5.1057
http://dx.doi.org/10.1007/BF02310555
http://dx.doi.org/10.1037/h0043943
http://dx.doi.org/10.1037/h0029382
http://dx.doi.org/10.1037/h0029382
http://dx.doi.org/10.1111/1467-9280.00328
http://dx.doi.org/10.1016/0191-8869%2889%2990131-1
http://dx.doi.org/10.1016/j.cognition.2012.09.004
http://dx.doi.org/10.1016/j.cognition.2012.09.004
http://dx.doi.org/10.1016/j.jesp.2012.06.003
http://dx.doi.org/10.3758/BF03200977
http://dx.doi.org/10.1177/1745691615596990
http://dx.doi.org/10.3758/s13414-011-0243-2
http://dx.doi.org/10.3758/s13414-011-0243-2
http://dx.doi.org/10.1006/obhd.1994.1029
http://dx.doi.org/10.1006/obhd.1994.1029
http://dx.doi.org/10.1177/109442810143005
http://dx.doi.org/10.1177/109442810143005
http://dx.doi.org/10.1016/S0749-596X%2802%2900511-9
http://dx.doi.org/10.1111/1467-8721.00160
http://dx.doi.org/10.1111/1467-8721.00160
http://dx.doi.org/10.1177/1745691617720478
http://dx.doi.org/10.1177/1745691617720478
http://dx.doi.org/10.3758/BF03203267
http://dx.doi.org/10.1162/089892902317361886
http://dx.doi.org/10.1162/089892902317361886
http://dx.doi.org/10.1037/h0023232
http://dx.doi.org/10.1523/JNEUROSCI.0309-11.2011
http://dx.doi.org/10.1523/JNEUROSCI.0309-11.2011
http://dx.doi.org/10.1007/978-3-319-33175-1_2
http://dx.doi.org/10.1007/978-3-319-33175-1_2
http://dx.doi.org/10.1037/0096-3445.133.1.101
http://dx.doi.org/10.1037/0096-3445.133.1.101
http://dx.doi.org/10.1007/s00221-007-1193-8


lated potentials, and neural source analyses. Frontiers in Human Neu-
roscience, 8, 813. http://dx.doi.org/10.3389/fnhum.2014.00813

Gawronski, B. (2002). What does the implicit association test measure? A
test of the convergent and discriminant validity of prejudice-related
IATs. Experimental Psychology, 49, 171–180. http://dx.doi.org/10
.1026//1618-3169.49.3.171

Gawronski, B., Morrison, M., Phills, C. E., & Galdi, S. (2017). Temporal
stability of implicit and explicit measures: A longitudinal analysis.
Personality and Social Psychology Bulletin, 43, 300–312. http://dx.doi
.org/10.1177/0146167216684131

Gollwitzer, M., Christ, O., & Lemmer, G. (2014). Individual differences
make a difference: On the use and the psychometric properties of
difference scores in social psychology. European Journal of Social
Psychology, 44, 673–682. http://dx.doi.org/10.1002/ejsp.2042

Gottman, J. M., & Rushe, R. H. (1993). The analysis of change: Issues,
fallacies, and new ideas. Journal of Consulting and Clinical Psychology,
61, 907–910. http://dx.doi.org/10.1037/0022-006X.61.6.907

Gratton, G., Coles, M. G. H., & Donchin, E. (1992). Optimizing the use of
information: Strategic control of activation of responses. Journal of
Experimental Psychology: General, 121, 480–506. http://dx.doi.org/10
.1037/0096-3445.121.4.480

Green, D. W. (1998). Mental control of the bilingual lexico-semantic
system. Bilingualism: Language and Cognition, 1, 67–81. http://dx.doi
.org/10.1017/S1366728998000133

Green, D. M., & Swets, J. A. (1966). Signal detection theory and psycho-
physics. New York, NY: Wiley.

Greenwald, A. G., McGhee, D. E., & Schwartz, J. L. (1998). Measuring
individual differences in implicit cognition: The implicit association test.
Journal of Personality and Social Psychology, 74, 1464–1480. http://
dx.doi.org/10.1037/0022-3514.74.6.1464

Greenwald, A. G., Nosek, B. A., & Banaji, M. R. (2003). Understanding
and using the implicit association test: I. An improved scoring algorithm.
Journal of Personality and Social Psychology, 85, 197–216. http://dx
.doi.org/10.1037/0022-3514.85.2.197

Greenwald, A. G., Poehlman, T. A., Uhlmann, E. L., & Banaji, M. R.
(2009). Understanding and using the Implicit Association Test: III.
Meta-analysis of predictive validity. Journal of Personality and Social
Psychology, 97, 17–41. http://dx.doi.org/10.1037/a0015575

Guilford, J. P. (1954). Psychometric methods (2nd ed.). New York, NY:
McGraw-Hill.

Hedge, C., Powell, G., & Sumner, P. (2018). The reliability paradox: Why
robust cognitive tasks do not produce reliable individual differences.
Behavior Research Methods, 50, 1166–1186. http://dx.doi.org/10.3758/
s13428-017-0935-1

Heitz, R. P. (2014). The speed–accuracy tradeoff: History, physiology,
methodology, and behavior. Frontiers in Neuroscience, 8, 150. http://
dx.doi.org/10.3389/fnins.2014.00150

Heitz, R. P., & Engle, R. W. (2007). Focusing the spotlight: Individual
differences in visual attention control. Journal of Experimental Psychology:
General, 136, 217–240. http://dx.doi.org/10.1037/0096-3445.136.2.217

Hertzog, C., Dixon, R. A., & Hultsch, D. F. (1992). Intraindividual change
in text recall of the elderly. Brain and Language, 42, 248–269. http://
dx.doi.org/10.1016/0093-934X(92)90100-S

Hertzog, C., Vernon, M. C., & Rypma, B. (1993). Age differences in
mental rotation task performance: The influence of speed/accuracy
tradeoffs. Journal of Gerontology, 48, 150–156. http://dx.doi.org/10
.1093/geronj/48.3.P150

Howard, D. V., & Howard, J. H., Jr. (1992). Adult age differences in the
rate of learning serial patterns: Evidence from direct and indirect tests.
Psychology and Aging, 7, 232–241. http://dx.doi.org/10.1037/0882-7974
.7.2.232

Howell, W. C., & Kreidler, D. L. (1963). Information processing under
contradictory instructional sets. Journal of Experimental Psychology,
65, 39–46. http://dx.doi.org/10.1037/h0038982

Hughes, M. M., Linck, J. A., Bowles, A. R., Koeth, J. T., & Bunting, M. F.
(2014). Alternatives to switch-cost scoring in the task-switching para-
digm: Their reliability and increased validity. Behavior Research Meth-
ods, 46, 702–721. http://dx.doi.org/10.3758/s13428-013-0411-5

Hultsch, D. F., MacDonald, S. W., & Dixon, R. A. (2002). Variability in
reaction time performance of younger and older adults. The Journals of
Gerontology Series B, Psychological Sciences and Social Sciences, 57,
101–115. http://dx.doi.org/10.1093/geronb/57.2.P101

Hutton, S. B., & Ettinger, U. (2006). The antisaccade task as a research tool
in psychopathology: A critical review. Psychophysiology, 43, 302–313.
http://dx.doi.org/10.1111/j.1469-8986.2006.00403.x

Ishigami, Y., & Klein, R. M. (2010). Repeated measurement of the com-
ponents of attention using two versions of the Attention Network Test
(ANT): Stability, isolability, robustness, and reliability. Journal of Neu-
roscience Methods, 190, 117–128. http://dx.doi.org/10.1016/j.jneumeth
.2010.04.019

Jersild, A. T. (1927). Mental set and shift. Archives de Psychologie, 14, 89.
Johns, G. (1981). Difference score measures of organizational behavior

variables: A critique. Organizational Behavior & Human Performance,
27, 443–463. http://dx.doi.org/10.1016/0030-5073(81)90033-7

Jost, J. T. (2018). The IAT is dead, long live the IAT: Context-sensitive
measures of implicit attitudes are indispensable to social and political
psychology. Current Directions in Psychological Science. Advance on-
line publication. http://dx.doi.org/10.1177/0963721418797309

Jost, J. T., Rudman, L. A., Blair, I. V., Carney, D. R., Dasgupta, N., Glaser,
J., & Hardin, C. D. (2009). The existence of implicit bias is beyond
reasonable doubt: A refutation of ideological and methodological objec-
tions and executive summary of ten studies that no manager should
ignore. Research in Organizational Behavior, 29, 39–69. http://dx.doi
.org/10.1016/j.riob.2009.10.001

Kane, M. J., Bleckley, M. K., Conway, A. R., & Engle, R. W. (2001). A
controlled-attention view of working-memory capacity. Journal of Ex-
perimental Psychology: General, 130, 169–183. http://dx.doi.org/10
.1037/0096-3445.130.2.169

Kane, M. J., & Engle, R. W. (2000). Working-memory capacity, proactive
interference, and divided attention: Limits on long-term memory re-
trieval. Journal of Experimental Psychology: Learning, Memory, and
Cognition, 26, 336–358. http://dx.doi.org/10.1037/0278-7393.26.2.336

Kane, M. J., & Engle, R. W. (2003). Working-memory capacity and the
control of attention: The contributions of goal neglect, response competi-
tion, and task set to Stroop interference. Journal of Experimental Psychol-
ogy: General, 132, 47–70. http://dx.doi.org/10.1037/0096-3445.132.1.47

Kane, M. J., Meier, M. E., Smeekens, B. A., Gross, G. M., Chun, C. A.,
Silvia, P. J., & Kwapil, T. R. (2016). Individual differences in the
executive control of attention, memory, and thought, and their associa-
tions with schizotypy. Journal of Experimental Psychology: General,
145, 1017–1048. http://dx.doi.org/10.1037/xge0000184

Kang, J., & Banaji, M. R. (2006). Fair measures: A behavioral realist
revision of affirmative action. California Law Review, 94, 1063–1118.

Kaufman, S. B., Deyoung, C. G., Gray, J. R., Jiménez, L., Brown, J., &
Mackintosh, N. (2010). Implicit learning as an ability. Cognition, 116,
321–340. http://dx.doi.org/10.1016/j.cognition.2010.05.011

Kessler, R. C. (1977). The use of change scores as criteria in longitudinal
survey research. Quality & Quantity: International Journal of Method-
ology, 11, 43–66.

Kiesel, A., Steinhauser, M., Wendt, M., Falkenstein, M., Jost, K., Philipp,
A. M., & Koch, I. (2010). Control and interference in task switching—A
review. Psychological Bulletin, 136, 849 – 874. http://dx.doi.org/10
.1037/a0019842

Konrad, K., Neufang, S., Thiel, C. M., Specht, K., Hanisch, C., Fan, J., . . .
Fink, G. R. (2005). Development of attentional networks: An fMRI
study with children and adults. NeuroImage, 28, 429–439. http://dx.doi
.org/10.1016/j.neuroimage.2005.06.065

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

530 DRAHEIM, MASHBURN, MARTIN, AND ENGLE

http://dx.doi.org/10.3389/fnhum.2014.00813
http://dx.doi.org/10.1026//1618-3169.49.3.171
http://dx.doi.org/10.1026//1618-3169.49.3.171
http://dx.doi.org/10.1177/0146167216684131
http://dx.doi.org/10.1177/0146167216684131
http://dx.doi.org/10.1002/ejsp.2042
http://dx.doi.org/10.1037/0022-006X.61.6.907
http://dx.doi.org/10.1037/0096-3445.121.4.480
http://dx.doi.org/10.1037/0096-3445.121.4.480
http://dx.doi.org/10.1017/S1366728998000133
http://dx.doi.org/10.1017/S1366728998000133
http://dx.doi.org/10.1037/0022-3514.74.6.1464
http://dx.doi.org/10.1037/0022-3514.74.6.1464
http://dx.doi.org/10.1037/0022-3514.85.2.197
http://dx.doi.org/10.1037/0022-3514.85.2.197
http://dx.doi.org/10.1037/a0015575
http://dx.doi.org/10.3758/s13428-017-0935-1
http://dx.doi.org/10.3758/s13428-017-0935-1
http://dx.doi.org/10.3389/fnins.2014.00150
http://dx.doi.org/10.3389/fnins.2014.00150
http://dx.doi.org/10.1037/0096-3445.136.2.217
http://dx.doi.org/10.1016/0093-934X%2892%2990100-S
http://dx.doi.org/10.1016/0093-934X%2892%2990100-S
http://dx.doi.org/10.1093/geronj/48.3.P150
http://dx.doi.org/10.1093/geronj/48.3.P150
http://dx.doi.org/10.1037/0882-7974.7.2.232
http://dx.doi.org/10.1037/0882-7974.7.2.232
http://dx.doi.org/10.1037/h0038982
http://dx.doi.org/10.3758/s13428-013-0411-5
http://dx.doi.org/10.1093/geronb/57.2.P101
http://dx.doi.org/10.1111/j.1469-8986.2006.00403.x
http://dx.doi.org/10.1016/j.jneumeth.2010.04.019
http://dx.doi.org/10.1016/j.jneumeth.2010.04.019
http://dx.doi.org/10.1016/0030-5073%2881%2990033-7
http://dx.doi.org/10.1177/0963721418797309
http://dx.doi.org/10.1016/j.riob.2009.10.001
http://dx.doi.org/10.1016/j.riob.2009.10.001
http://dx.doi.org/10.1037/0096-3445.130.2.169
http://dx.doi.org/10.1037/0096-3445.130.2.169
http://dx.doi.org/10.1037/0278-7393.26.2.336
http://dx.doi.org/10.1037/0096-3445.132.1.47
http://dx.doi.org/10.1037/xge0000184
http://dx.doi.org/10.1016/j.cognition.2010.05.011
http://dx.doi.org/10.1037/a0019842
http://dx.doi.org/10.1037/a0019842
http://dx.doi.org/10.1016/j.neuroimage.2005.06.065
http://dx.doi.org/10.1016/j.neuroimage.2005.06.065


Kroll, J. F., Dussias, P. E., Bice, K., & Perrotti, L. (2015). Bilingualism,
mind, and brain. Annual Review of Linguistics, 1, 377–394. http://dx.doi
.org/10.1146/annurev-linguist-030514-124937

Kroll, J. F., Gullifer, J. W., McClain, R., Rossi, E., & Martin, M. C. (2015).
Selection and control in bilingual comprehension and production. In J.
Schweiter (Ed.), Cambridge handbook of bilingualism (pp. 485–507).
New York, NY: Cambridge University Press. http://dx.doi.org/10.1017/
CBO9781107447257.021

Lance, C. E., Butts, M. M., & Michels, L. C. (2006). The sources of four
commonly reported cutoff criteria: What did they really say? Organiza-
tional Research Methods, 9, 202–220. http://dx.doi.org/10.1177/
1094428105284919

Lane, L. A., Banaji, M. R., Nosek, B. A., & Greenwald, A. G. (2007).
Understanding and using the Implicit Association Test: V. What we
know (so far) about the method. In B. Wittenbrink & N. S. Schwartz
(Eds.), Implicit measures of attitudes: Procedures and controversies (pp.
59–102). New York, NY: Guilford Press.

Larson, D. (2010). A fair and implicitly impartial jury: An argument for
administering the Implicit Association Test during voir dire. DePaul
Journal for Social Justice, 3, 139–172.

Lavie, N. (1995). Perceptual load as a necessary condition for selective
attention. Journal of Experimental Psychology: Human Perception and
Performance, 21, 451–468.

Leek, M. R. (2001). Adaptive procedures in psychophysical research.
Perception & Psychophysics, 63, 1279–1292. http://dx.doi.org/10.3758/
BF03194543

Lehtonen, M., Soveri, A., Laine, A., Järvenpää, J., de Bruin, A., & Antfolk,
J. (2018). Is bilingualism associated with enhanced executive function-
ing in adults? A meta-analytic review. Psychological Bulletin, 144,
394–425. http://dx.doi.org/10.1037/bul0000142

Lerche, V., Voss, A., & Nagler, M. (2017). How many trials are required
for parameter estimation in diffusion modeling? A comparison of dif-
ferent optimization criteria. Behavior Research Methods, 49, 513–537.
http://dx.doi.org/10.3758/s13428-016-0740-2

Li, P., Legault, J., & Litcofsky, K. A. (2014). Neuroplasticity as a function
of second language learning: Anatomical changes in the human brain.
Cortex, 58, 301–324. http://dx.doi.org/10.1016/j.cortex.2014.05.001

Liefooghe, B., Barrouillet, P., Vandierendonck, A., & Camos, V. (2008).
Working memory costs of task switching. Journal of Experimental
Psychology: Learning, Memory, and Cognition, 34, 478–494. http://dx
.doi.org/10.1037/0278-7393.34.3.478

Liefooghe, B., Vandierendonck, A., Muyllaert, I., Verbruggen, F., &
Vanneste, W. (2005). The phonological loop in task alternation and task
repetition. Memory, 13, 550 –560. http://dx.doi.org/10.1080/
09658210444000250

Liesefeld, H. R., Fu, X., & Zimmer, H. D. (2015). Fast and careless or
careful and slow? Apparent holistic processing in mental rotation is
explained by speed–accuracy trade-offs. Journal of Experimental Psy-
chology: Learning, Memory, and Cognition, 41, 1140–1151. http://dx
.doi.org/10.1037/xlm0000081

Liesefeld, H. R., & Janczyk, M. (2018). Combining speed and accuracy to
control for speed accuracy trade-offs(?). Behavior Research Methods. Ad-
vance online publication. http://dx.doi.org/10.3758/s13428-018-1076-x

Logan, G. D. (1985). Executive control of thought and action. Acta
Psychologica, 60(2–3), 193–210. http://dx.doi.org/10.1016/0001-
6918(85)90055-1

Logan, G. D. (2004). Working memory, task switching, and executive
control in the task span procedure. Journal of Experimental Psychology:
General, 133, 218–236. http://dx.doi.org/10.1037/0096-3445.133.2.218

Logan, G. D., & Gordon, R. D. (2001). Executive control of visual
attention in dual-task situations. Psychological Review, 108, 393–434.
http://dx.doi.org/10.1037/0033-295X.108.2.393

Logie, R. H., Della Sala, S., Laiacona, M., Chalmers, P., & Wynn, V.
(1996). Group aggregates and individual reliability: The case of verbal

short-term memory. Memory & Cognition, 24, 305–321. http://dx.doi
.org/10.3758/BF03213295

Lohman, D. F. (1989). Human intelligence: An introduction to advances in
theory and research. Review of Educational Research, 59, 333–373.
http://dx.doi.org/10.3102/00346543059004333

Lord, F. M. (1956). The measurement of growth. ETS Research Bulletin
Series, 1956, i-22. http://dx.doi.org/10.1002/j.2333-8504.1956
.tb00058.x

Lord, F. M. (1963). Elementary models for measuring change. In C. W.
Harris (Ed.), Problems in measuring change (pp. 21–38). Madison, WI:
University of Wisconsin Press.

Lord, F. M., & Novick, M. R. (1968). Statistical theories of mental test
scores. Reading, MA: Addison Wesley.

Luce, R. D. (1986). Response times: Their role in inferring elementary
mental organization. New York, NY: Oxford University Press.

Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory
for features and conjunctions. Nature, 390, 279–281. http://dx.doi.org/
10.1038/36846

Luk, G., Bialystok, E., Craik, F. I. M., & Grady, C. L. (2011). Lifelong
bilingualism maintains white matter integrity in older adults. The Jour-
nal of Neuroscience, 31, 16808 –16813. http://dx.doi.org/10.1523/
JNEUROSCI.4563-11.2011

MacLeod, C. M. (1991). Half a century of research on the Stroop effect: An
integrative review. Psychological Bulletin, 109, 163–203. http://dx.doi
.org/10.1037/0033-2909.109.2.163

MacLeod, J. W., Lawrence, M. A., McConnell, M. M., Eskes, G. A., Klein,
R. M., & Shore, D. I. (2010). Appraising the ANT: Psychometric and
theoretical considerations of the Attention Network Test. Neuropsychol-
ogy, 24, 637–651. http://dx.doi.org/10.1037/a0019803

Malgady, R. G., & Colon-Malgady, G. (1991). Comparing the reliability of
difference scores and residuals in analysis of covariance. Educational
and Psychological Measurement, 51, 803–807.

Mayr, U., & Keele, S. W. (2000). Changing internal constraints on action:
The role of backward inhibition. Journal of Experimental Psychology:
General, 129, 4–26. http://dx.doi.org/10.1037/0096-3445.129.1.4

Mayr, U., & Kliegl, R. (2000). Task-set switching and long-term memory
retrieval. Journal of Experimental Psychology: Learning, Memory, and
Cognition, 26, 1124–1140. http://dx.doi.org/10.1037/0278-7393.26.5.1124

McVay, J. C., & Kane, M. J. (2012). Drifting from slow to “D’oh!”:
Working memory capacity and mind wandering predict extreme reaction
times and executive control errors. Journal of Experimental Psychology:
Learning, Memory, and Cognition, 38, 525–549. http://dx.doi.org/10
.1037/a0025896

Meiran, N. (1996). Reconfiguration of processing mode prior to task perfor-
mance. Journal of Experimental Psychology: Learning, Memory, and Cog-
nition, 22, 1423–1442. http://dx.doi.org/10.1037/0278-7393.22.6.1423

Miller, J., & Ulrich, R. (2013). Mental chronometry and individual differ-
ences: Modeling reliabilities and correlations of reaction time means and
effect sizes. Psychonomic Bulletin & Review, 20, 819–858. http://dx.doi
.org/10.3758/s13423-013-0404-5

Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A.,
& Wager, T. D. (2000). The unity and diversity of executive functions
and their contributions to complex “Frontal Lobe” tasks: A latent vari-
able analysis. Cognitive Psychology, 41, 49–100. http://dx.doi.org/10
.1006/cogp.1999.0734

Monsell, S. (2003). Task switching. Trends in Cognitive Sciences, 7,
134–140. http://dx.doi.org/10.1016/S1364-6613(03)00028-7

Murphy, C. F., & Alexopoulos, G. S. (2006). Attention network dysfunc-
tion and treatment response of geriatric depression. Journal of Clinical
and Experimental Neuropsychology, 28, 96–100. http://dx.doi.org/10
.1080/13803390490918101

Nosek, B. A., & Banaji, M. R. (2001). The Go/No-Go association task.
Social Cognition, 19, 625–666. http://dx.doi.org/10.1521/soco.19.6.625
.20886

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

531REACTION TIME AND INDIVIDUAL DIFFERENCES

http://dx.doi.org/10.1146/annurev-linguist-030514-124937
http://dx.doi.org/10.1146/annurev-linguist-030514-124937
http://dx.doi.org/10.1017/CBO9781107447257.021
http://dx.doi.org/10.1017/CBO9781107447257.021
http://dx.doi.org/10.1177/1094428105284919
http://dx.doi.org/10.1177/1094428105284919
http://dx.doi.org/10.3758/BF03194543
http://dx.doi.org/10.3758/BF03194543
http://dx.doi.org/10.1037/bul0000142
http://dx.doi.org/10.3758/s13428-016-0740-2
http://dx.doi.org/10.1016/j.cortex.2014.05.001
http://dx.doi.org/10.1037/0278-7393.34.3.478
http://dx.doi.org/10.1037/0278-7393.34.3.478
http://dx.doi.org/10.1080/09658210444000250
http://dx.doi.org/10.1080/09658210444000250
http://dx.doi.org/10.1037/xlm0000081
http://dx.doi.org/10.1037/xlm0000081
http://dx.doi.org/10.3758/s13428-018-1076-x
http://dx.doi.org/10.1016/0001-6918%2885%2990055-1
http://dx.doi.org/10.1016/0001-6918%2885%2990055-1
http://dx.doi.org/10.1037/0096-3445.133.2.218
http://dx.doi.org/10.1037/0033-295X.108.2.393
http://dx.doi.org/10.3758/BF03213295
http://dx.doi.org/10.3758/BF03213295
http://dx.doi.org/10.3102/00346543059004333
http://dx.doi.org/10.1002/j.2333-8504.1956.tb00058.x
http://dx.doi.org/10.1002/j.2333-8504.1956.tb00058.x
http://dx.doi.org/10.1038/36846
http://dx.doi.org/10.1038/36846
http://dx.doi.org/10.1523/JNEUROSCI.4563-11.2011
http://dx.doi.org/10.1523/JNEUROSCI.4563-11.2011
http://dx.doi.org/10.1037/0033-2909.109.2.163
http://dx.doi.org/10.1037/0033-2909.109.2.163
http://dx.doi.org/10.1037/a0019803
http://dx.doi.org/10.1037/0096-3445.129.1.4
http://dx.doi.org/10.1037/0278-7393.26.5.1124
http://dx.doi.org/10.1037/a0025896
http://dx.doi.org/10.1037/a0025896
http://dx.doi.org/10.1037/0278-7393.22.6.1423
http://dx.doi.org/10.3758/s13423-013-0404-5
http://dx.doi.org/10.3758/s13423-013-0404-5
http://dx.doi.org/10.1006/cogp.1999.0734
http://dx.doi.org/10.1006/cogp.1999.0734
http://dx.doi.org/10.1016/S1364-6613%2803%2900028-7
http://dx.doi.org/10.1080/13803390490918101
http://dx.doi.org/10.1080/13803390490918101
http://dx.doi.org/10.1521/soco.19.6.625.20886
http://dx.doi.org/10.1521/soco.19.6.625.20886


Nunes, K. L., Firestone, P., & Baldwin, M. W. (2007). Indirect assessment
of cognitions of child sexual abusers with the Implicit Association Test.
Criminal Justice and Behavior, 34, 454–475. http://dx.doi.org/10.1177/
0093854806291703

Nunnally, J. C. (1964). Educational measurement and evaluation. New
York, NY: McGraw-Hill.

Nunnally, J. C., & Bernstein, I. H. (1994). Psychometric theory (3rd ed.).
New York, NY: McGraw-Hill.

Oberauer, K., Süß, H. M., Wilhelm, O., & Wittman, W. W. (2003). The
multiple faces of working memory: Storage, processing, supervision,
and coordination. Intelligence, 31, 167–193. http://dx.doi.org/10.1016/
S0160-2896(02)00115-0

Ollman, R. T. (1966). Fast guesses in choice reaction time. Psychonomic
Science, 6, 155–156. http://dx.doi.org/10.3758/BF03328004

Oswald, F. L., Mitchell, G., Blanton, H., Jaccard, J., & Tetlock, P. E.
(2013). Predicting ethnic and racial discrimination: A meta-analysis of
IAT criterion studies. Journal of Personality and Social Psychology,
105, 171–192. http://dx.doi.org/10.1037/a0032734

Overall, J. E., & Woodward, J. A. (1975). Unreliability of difference
scores: A paradox for measurement of change. Psychological Bulletin,
82, 85–86. http://dx.doi.org/10.1037/h0076158

Paap, K. R., & Greenberg, Z. I. (2013). There is no coherent evidence for
a bilingual advantage in executive processing. Cognitive Psychology, 66,
232–258. http://dx.doi.org/10.1016/j.cogpsych.2012.12.002

Paap, K. R., Johnson, H. A., & Sawi, O. (2015). Bilingual advantages in
executive functioning either do not exist or are restricted to very specific
and undetermined circumstances. Cortex, 69, 265–278. http://dx.doi.org/
10.1016/j.cortex.2015.04.014

Paap, K. R., & Sawi, O. (2014). Bilingual advantages in executive func-
tioning: Problems in convergent validity, discriminant validity, and the
identification of the theoretical constructs. Frontiers in Psychology, 5,
962. http://dx.doi.org/10.3389/fpsyg.2014.00962

Paap, K. R., & Sawi, O. (2016). The role of test–retest reliability in
measuring individual and group differences in executive functioning.
Journal of Neuroscience Methods, 274, 81–93. http://dx.doi.org/10
.1016/j.jneumeth.2016.10.002

Pacheco-Unguetti, A. P., Acosta, A., Marqués, E., & Lupiáñez, J. (2011).
Alterations of the attentional networks in patients with anxiety disorders.
Journal of Anxiety Disorders, 25, 888–895. http://dx.doi.org/10.1016/j
.janxdis.2011.04.010

Pachella, R. G., & Fisher, D. (1972). Hick’s law and the speed–accuracy
trade-off in absolute judgment. Journal of Experimental Psychology, 92,
378–384. http://dx.doi.org/10.1037/h0032369

Pachella, R., & Pew, R. W. (1968). Speed–accuracy tradeoff in reaction
time: Effect of discrete criterion times. Journal of Experimental Psy-
chology, 76, 19–24. http://dx.doi.org/10.1037/h0021275

Pashler, H. (1988). Familiarity and visual change detection. Perception &
Psychophysics, 44, 369–378. http://dx.doi.org/10.3758/BF03210419

Paulhus, D., & Petrusic, W. M. (2010). Measuring individual differences
with signal detection analysis: A guide to indices based on knowledge
ratings. Unpublished manuscript.

Peter, J. P., Churchill, G. A., Jr., & Brown, T. J. (1993). Caution in the use
of difference scores in consumer research. Journal of Consumer Re-
search, 19, 655–662. http://dx.doi.org/10.1086/209329

Pew, R. W. (1969). The speed–accuracy operating characteristic. Acta
Psychologica, 30, 16 –26. http://dx.doi.org/10.1016/0001-6918(69)
90035-3

Rabbitt, P. M. (1966). Errors and error correction in choice-response tasks.
Journal of Experimental Psychology, 71, 264–272. http://dx.doi.org/10
.1037/h0022853

Rabbitt, P. M. (1979). How old and young subjects monitor and control
responses for accuracy and speed. British Journal of Psychology, 70,
305–311. http://dx.doi.org/10.1111/j.2044-8295.1979.tb01687.x

Rabbitt, P., Osman, P., Moore, B., & Stollery, B. (2001). There are stable
individual differences in performance variability, both from moment to
moment and from day to day. The Quarterly Journal of Experimental
Psychology: Human Experimental Psychology, 54, 981–1003. http://dx
.doi.org/10.1080/713756013

Ratcliff, R. (1978). A theory of memory retrieval. Psychological Review,
85, 59–108. http://dx.doi.org/10.1037/0033-295X.85.2.59

Ratcliff, R., Smith, P. L., & McKoon, G. (2015). Modeling regularities in
response time and accuracy data with the diffusion model. Current
Directions in Psychological Science, 24, 458–470. http://dx.doi.org/10
.1177/0963721415596228

Raven, J. C. (1941). Standardization of progressive matrices. British Jour-
nal of Medical Psychology, 19, 137–150. http://dx.doi.org/10.1111/j
.2044-8341.1941.tb00316.x

Redick, T. S., Broadway, J. M., Meier, M. E., Kuriakose, P. S., Unsworth,
N., Kane, M. J., & Engle, R. W. (2012). Measuring working memory
capacity with automated complex span tasks. European Journal of
Psychological Assessment, 28, 164 –171. http://dx.doi.org/10.1027/
1015-5759/a000123

Redick, T. S., & Engle, R. W. (2006). Working memory capacity and
Attention Network Test performance. Applied Cognitive Psychology, 20,
713–721. http://dx.doi.org/10.1002/acp.1224

Redick, T. S., Shipstead, Z., Meier, M. E., Montroy, J. J., Hicks, K. L., Unsworth,
N., . . . Engle, R. W. (2016). Cognitive predictors of a common multitasking
ability: Contributions from working memory, attention control, and fluid intel-
ligence. Journal of Experimental Psychology: General, 145, 1473–1492. http://
dx.doi.org/10.1037/xge0000219

Regev, S., & Meiran, N. (2014). Post-error slowing is influenced by
cognitive control demand. Acta Psychologica, 152, 10–18. http://dx.doi
.org/10.1016/j.actpsy.2014.07.006

Rey-Mermet, A., Gade, M., & Oberauer, K. (2018). Should we stop thinking
about inhibition? Searching for individual and age differences in inhibition
ability. Journal of Experimental Psychology: Learning, Memory, and Cogni-
tion, 44, 501–526. http://dx.doi.org/10.1037/xlm0000450

Rogers, R. D., & Monsell, S. (1995). Costs of a predictable switch between
simple cognitive tasks. Journal of Experimental Psychology: General,
124, 207–231. http://dx.doi.org/10.1037/0096-3445.124.2.207

Rogosa, D., Brandt, D., & Zimowski, M. (1982). A growth curve approach
to the measurement of change. Psychological Bulletin, 92, 726–748.
http://dx.doi.org/10.1037/0033-2909.92.3.726

Rogosa, D. R., & Willett, J. B. (1983). Demonstrating the reliability the
difference score in the measurement of change. Journal of Educational
Measurement, 20, 335–343. http://dx.doi.org/10.1111/j.1745-3984.1983
.tb00211.x

Ross, D. A., Richler, J. J., & Gauthier, I. (2015). Reliability of composite-
task measurements of holistic face processing. Behavior Research Meth-
ods, 47, 736–743. http://dx.doi.org/10.3758/s13428-014-0497-4

Rouder, J. N., & Haaf, J. M. (2018). A psychometrics of individual
differences in experimental tasks. PsyArxiv.

Rubinstein, J. S., Meyer, D. E., & Evans, J. E. (2001). Executive control of
cognitive processes in task switching. Journal of Experimental Psychol-
ogy: Human Perception and Performance, 27, 763–797. http://dx.doi
.org/10.1037/0096-1523.27.4.763

Rueda, M. R., Fan, J., McCandliss, B. D., Halparin, J. D., Gruber, D. B.,
Lercari, L. P., & Posner, M. I. (2004). Development of attentional
networks in childhood. Neuropsychologia, 42, 1029–1040. http://dx.doi
.org/10.1016/j.neuropsychologia.2003.12.012

Salthouse, T. A. (1979). Adult age and the speed–accuracy trade-off.
Ergonomics, 22, 811– 821. http://dx.doi.org/10.1080/0014013790
8924659

Salthouse, T. A. (1996). The processing-speed theory of adult age differ-
ences in cognition. Psychological Review, 103, 403–428. http://dx.doi
.org/10.1037/0033-295X.103.3.403

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

532 DRAHEIM, MASHBURN, MARTIN, AND ENGLE

http://dx.doi.org/10.1177/0093854806291703
http://dx.doi.org/10.1177/0093854806291703
http://dx.doi.org/10.1016/S0160-2896%2802%2900115-0
http://dx.doi.org/10.1016/S0160-2896%2802%2900115-0
http://dx.doi.org/10.3758/BF03328004
http://dx.doi.org/10.1037/a0032734
http://dx.doi.org/10.1037/h0076158
http://dx.doi.org/10.1016/j.cogpsych.2012.12.002
http://dx.doi.org/10.1016/j.cortex.2015.04.014
http://dx.doi.org/10.1016/j.cortex.2015.04.014
http://dx.doi.org/10.3389/fpsyg.2014.00962
http://dx.doi.org/10.1016/j.jneumeth.2016.10.002
http://dx.doi.org/10.1016/j.jneumeth.2016.10.002
http://dx.doi.org/10.1016/j.janxdis.2011.04.010
http://dx.doi.org/10.1016/j.janxdis.2011.04.010
http://dx.doi.org/10.1037/h0032369
http://dx.doi.org/10.1037/h0021275
http://dx.doi.org/10.3758/BF03210419
http://dx.doi.org/10.1086/209329
http://dx.doi.org/10.1016/0001-6918%2869%2990035-3
http://dx.doi.org/10.1016/0001-6918%2869%2990035-3
http://dx.doi.org/10.1037/h0022853
http://dx.doi.org/10.1037/h0022853
http://dx.doi.org/10.1111/j.2044-8295.1979.tb01687.x
http://dx.doi.org/10.1080/713756013
http://dx.doi.org/10.1080/713756013
http://dx.doi.org/10.1037/0033-295X.85.2.59
http://dx.doi.org/10.1177/0963721415596228
http://dx.doi.org/10.1177/0963721415596228
http://dx.doi.org/10.1111/j.2044-8341.1941.tb00316.x
http://dx.doi.org/10.1111/j.2044-8341.1941.tb00316.x
http://dx.doi.org/10.1027/1015-5759/a000123
http://dx.doi.org/10.1027/1015-5759/a000123
http://dx.doi.org/10.1002/acp.1224
http://dx.doi.org/10.1037/xge0000219
http://dx.doi.org/10.1037/xge0000219
http://dx.doi.org/10.1016/j.actpsy.2014.07.006
http://dx.doi.org/10.1016/j.actpsy.2014.07.006
http://dx.doi.org/10.1037/xlm0000450
http://dx.doi.org/10.1037/0096-3445.124.2.207
http://dx.doi.org/10.1037/0033-2909.92.3.726
http://dx.doi.org/10.1111/j.1745-3984.1983.tb00211.x
http://dx.doi.org/10.1111/j.1745-3984.1983.tb00211.x
http://dx.doi.org/10.3758/s13428-014-0497-4
http://dx.doi.org/10.1037/0096-1523.27.4.763
http://dx.doi.org/10.1037/0096-1523.27.4.763
http://dx.doi.org/10.1016/j.neuropsychologia.2003.12.012
http://dx.doi.org/10.1016/j.neuropsychologia.2003.12.012
http://dx.doi.org/10.1080/00140137908924659
http://dx.doi.org/10.1080/00140137908924659
http://dx.doi.org/10.1037/0033-295X.103.3.403
http://dx.doi.org/10.1037/0033-295X.103.3.403


Salthouse, T. A., Fristoe, N., McGuthry, K. E., & Hambrick, D. Z. (1998).
Relation of task switching to speed, age, and fluid intelligence. Psychology
and Aging, 13, 445–461. http://dx.doi.org/10.1037/0882-7974.13.3.445

Saujani, R. M. (2003). Implicit Association Test: A measure of uncon-
scious racism in legislative decision-making. Michigan Journal of Race
& Law, 8, 395–423.

Schönbrodt, F. D., & Perugini, M. (2013). At what sample size do corre-
lations stabilize? Journal of Research in Personality, 47, 609–612.
http://dx.doi.org/10.1016/j.jrp.2013.05.009

Schouten, J. F., & Bekker, J. A. M. (1967). Reaction time and accuracy.
Acta Psychologica, 27, 143–153. http://dx.doi.org/10.1016/0001-
6918(67)90054-6

Shipstead, Z., & Engle, R. W. (2013). Interference within the focus of
attention: Working memory tasks reflect more than temporary mainte-
nance. Journal of Experimental Psychology: Learning, Memory, and
Cognition, 39, 277–289. http://dx.doi.org/10.1037/a0028467

Shipstead, Z., Harrison, T. L., & Engle, R. W. (2015). Working memory
capacity and the scope and control of attention. Attention, Perception, &
Psychophysics, 77, 1863–1880. http://dx.doi.org/10.3758/s13414-015-
0899-0

Shipstead, Z., Harrison, T. L., & Engle, R. W. (2016). Working memory
capacity and fluid intelligence: Maintenance and disengagement. Per-
spectives on Psychological Science, 11, 771–799. http://dx.doi.org/10
.1177/1745691616650647

Shipstead, Z., Lindsey, D. R., Marshall, R. L., & Engle, R. W. (2014). The
mechanisms of working memory capacity: Primary memory, secondary
memory, and attention control. Journal of Memory and Language, 72,
116–141. http://dx.doi.org/10.1016/j.jml.2014.01.004

Siegrist, M. (1997). Test–retest reliability of different versions of the
Stroop test. The Journal of Psychology: Interdisciplinary and Applied,
131, 299–306. http://dx.doi.org/10.1080/00223989709603516

Simon, J. R., & Rudell, A. P. (1967). Auditory S-R compatibility: The
effect of an irrelevant cue on information processing. Journal of Applied
Psychology, 51, 300–304. http://dx.doi.org/10.1037/h0020586

Spearman, C. C. (1910). Correlations calculated from faulty data. British
Journal of Psychology, 3, 271–295. http://dx.doi.org/10.1111/j.2044-
8295.1910.tb00206.x

Sperber, R. D., McCauley, C., Ragain, R. D., & Weil, C. M. (1979).
Semantic priming effects on picture and word processing. Memory &
Cognition, 7, 339–345. http://dx.doi.org/10.3758/BF03196937

Sriram, N., Greenwald, A. G., & Nosek, B. A. (2010). Correlational biases
in mean response latency differences. Statistical Methodology, 7, 277–
291. http://dx.doi.org/10.1016/j.stamet.2009.10.004

Stanislaw, H., & Todorov, N. (1999). Calculation of signal detection theory
measures. Behavior Research Methods, Instruments, & Computers, 31,
137–149. http://dx.doi.org/10.3758/BF03207704

Starns, J. J., & Ratcliff, R. (2010). The effects of aging on the speed–
accuracy compromise: Boundary optimality in the diffusion model.
Psychology and Aging, 25, 377–390. http://dx.doi.org/10.1037/
a0018022

Steketee, G., & Chambless, D. L. (1992). Methodological issues in pre-
diction of treatment outcome. Clinical Psychology Review, 12, 387–400.
http://dx.doi.org/10.1016/0272-7358(92)90123-P

Streiner, D. L., & Norman, G. R. (1995). Measurement scales: A practical
guide to their development and use (2nd ed.). Oxford, UK: Oxford
University Press.

Stroop, J. R. (1935). Studies of interference in serial verbal reactions.
Journal of Experimental Psychology, 18, 643–662. http://dx.doi.org/10
.1037/h0054651

Suades-González, E., Forns, J., García-Esteban, R., López-Vicente, M.,
Esnaola, M., Álvarez-Pedrerol, M., . . . Sunyer, J. (2017). A longitudinal
study on attention development in primary school children with and
without teacher-reported symptoms of ADHD. Frontiers in Psychology,
8, 655. http://dx.doi.org/10.3389/fpsyg.2017.00655

Thomas, D. R., & Zumbo, B. D. (2012). Difference scores from the point
of view of reliability and repeated-measures ANOVA: In defense of
difference scores for data analysis. Educational and Psychological Mea-
surement, 72, 37–43. http://dx.doi.org/10.1177/0013164411409929

Tisak, J., & Smith, C. S. (1994a). Defending and extending difference
score methods. Journal of Management, 20, 675–682. http://dx.doi.org/
10.1177/014920639402000310

Tisak, J., & Smith, C. S. (1994b). Rejoinder to Edwards’s comments.
Journal of Management, 20, 691–694.

Townsend, J. T., & Ashby, F. G. (1978). Methods of modeling capacity in
simple processing systems. In J. Castellan and F. Restle (Eds.), Cogni-
tive theory (Vol. III, pp. 200–239). Hillsdale, NJ: Erlbaum.

Trafimow, D. (2015). A defense against the alleged unreliability of differ-
ence scores. Cogent Mathematics, 2, 1064626. http://dx.doi.org/10
.1080/23311835.2015.1064626

Tsukahara, J. S., Harrison, T. L., Draheim, C. D., Martin, J. D., & Engle, R. W.
(2019). Attention control as a mediator of the sensory discrimination and
intelligence relationship. Manuscript submitted for publication.

Unsworth, N., & Engle, R. W. (2005). Individual differences in working
memory capacity and learning: Evidence from the serial reaction time
task. Memory & Cognition, 33, 213–220. http://dx.doi.org/10.3758/
BF03195310

Unsworth, N., Redick, T. S., Spillers, G. J., & Brewer, G. A. (2012).
Variation in working memory capacity and cognitive control: Goal
maintenance and microadjustments of control. Quarterly Journal of
Experimental Psychology: Human Experimental Psychology, 65, 326–
355. http://dx.doi.org/10.1080/17470218.2011.597865

Unsworth, N., & Robison, M. K. (2016). Pupillary correlates of lapses of
sustained attention. Cognitive, Affective & Behavioral Neuroscience, 16,
601–615. http://dx.doi.org/10.3758/s13415-016-0417-4

Unsworth, N., & Spillers, G. J. (2010). Working memory capacity: Atten-
tion control, secondary memory, or both? A direct test of the dual-
component model. Journal of Memory and Language, 62, 392–406.
http://dx.doi.org/10.1016/j.jml.2010.02.001

Urbanek, C., Weinges-Evers, N., Bellmann-Strobl, J., Bock, M., Dörr, J.,
Hahn, E., . . . the Thi Minh Tam Ta. (2010). Attention Network Test
reveals alerting network dysfunction in multiple sclerosis. Multiple
Sclerosis, 16, 93–99. http://dx.doi.org/10.1177/1352458509350308

Urry, K., Burns, N. R., & Baetu, I. (2015). Accuracy-based measures
provide a better measure of sequence learning than reaction time-based
measures. Frontiers in Psychology, 6, 1158. http://dx.doi.org/10.3389/
fpsyg.2015.01158

Vandierendonck, A. (2017). A comparison of methods to combine speed
and accuracy measures of performance: A rejoinder on the binning
procedure. Behavior Research Methods, 49, 653–673. http://dx.doi.org/
10.3758/s13428-016-0721-5

Vandierendonck, A. (2018). Further tests of the utility of integrated speed–
accuracy measures in task switching. Journal of Cognition, 1, 8–23.
http://dx.doi.org/10.5334/joc.6

Vandierendonck, A., Liefooghe, B., & Verbruggen, F. (2010). Task switch-
ing: Interplay of reconfiguration and interference control. Psychological
Bulletin, 136, 601–626. http://dx.doi.org/10.1037/a0019791

Vatcheva, K. P., Lee, M., McCormick, J. B., & Rahbar, M. H. (2016).
Multicollinearity in regression analyses conducted in epidemiologic
studies. Epidemiology, 6, 227. http://dx.doi.org/10.4172/2161-1165
.1000227

Verhaeghen, P. (2011). Aging and executive control: Reports of a demise
greatly exaggerated. Current Directions in Psychological Science, 20,
174–180. http://dx.doi.org/10.1177/0963721411408772

Wagenmakers, E. J., Van Der Maas, H. L. J., & Grasman, R. P. P. P.
(2007). An EZ-diffusion model for response time and accuracy. Psycho-
nomic Bulletin & Review, 14, 3–22.

Way, W. D., Twing, J. S., Camara, W. J., Sweeney, K., Lazer, S., &

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

533REACTION TIME AND INDIVIDUAL DIFFERENCES

http://dx.doi.org/10.1037/0882-7974.13.3.445
http://dx.doi.org/10.1016/j.jrp.2013.05.009
http://dx.doi.org/10.1016/0001-6918%2867%2990054-6
http://dx.doi.org/10.1016/0001-6918%2867%2990054-6
http://dx.doi.org/10.1037/a0028467
http://dx.doi.org/10.3758/s13414-015-0899-0
http://dx.doi.org/10.3758/s13414-015-0899-0
http://dx.doi.org/10.1177/1745691616650647
http://dx.doi.org/10.1177/1745691616650647
http://dx.doi.org/10.1016/j.jml.2014.01.004
http://dx.doi.org/10.1080/00223989709603516
http://dx.doi.org/10.1037/h0020586
http://dx.doi.org/10.1111/j.2044-8295.1910.tb00206.x
http://dx.doi.org/10.1111/j.2044-8295.1910.tb00206.x
http://dx.doi.org/10.3758/BF03196937
http://dx.doi.org/10.1016/j.stamet.2009.10.004
http://dx.doi.org/10.3758/BF03207704
http://dx.doi.org/10.1037/a0018022
http://dx.doi.org/10.1037/a0018022
http://dx.doi.org/10.1016/0272-7358%2892%2990123-P
http://dx.doi.org/10.1037/h0054651
http://dx.doi.org/10.1037/h0054651
http://dx.doi.org/10.3389/fpsyg.2017.00655
http://dx.doi.org/10.1177/0013164411409929
http://dx.doi.org/10.1177/014920639402000310
http://dx.doi.org/10.1177/014920639402000310
http://dx.doi.org/10.1080/23311835.2015.1064626
http://dx.doi.org/10.1080/23311835.2015.1064626
http://dx.doi.org/10.3758/BF03195310
http://dx.doi.org/10.3758/BF03195310
http://dx.doi.org/10.1080/17470218.2011.597865
http://dx.doi.org/10.3758/s13415-016-0417-4
http://dx.doi.org/10.1016/j.jml.2010.02.001
http://dx.doi.org/10.1177/1352458509350308
http://dx.doi.org/10.3389/fpsyg.2015.01158
http://dx.doi.org/10.3389/fpsyg.2015.01158
http://dx.doi.org/10.3758/s13428-016-0721-5
http://dx.doi.org/10.3758/s13428-016-0721-5
http://dx.doi.org/10.5334/joc.6
http://dx.doi.org/10.1037/a0019791
http://dx.doi.org/10.4172/2161-1165.1000227
http://dx.doi.org/10.4172/2161-1165.1000227
http://dx.doi.org/10.1177/0963721411408772


Mazzeo, J. (2010). Some considerations related to the use of adaptive
testing for the common core assessments. Retrieved from http://www
.ets.org/research/policy_research_reports/publications/paper/2010/icfi

Weinreich, U. (1953). Languages in contact, findings and problems. New
York, NY: Linguistic Circle of New York.

Whitehead, P. S., Brewer, G. A., & Blais, C. (2018, July 26). Are cognitive
control processes reliable? Journal of Experimental Psychology: Learn-
ing, Memory, and Cognition. Advance online publication. http://dx.doi
.org/10.1037/xlm0000632

Wickelgren, W. A. (1977). Speed–accuracy tradeoffs and information
processing dynamics. Acta Psychologica, 41, 67–85. http://dx.doi.org/
10.1016/0001-6918(77)90012-9

Williams, R. H., Zimmerman, D. W., & Mazzagatti, R. D. (1987). Large

sample estimates of the reliability of simple, residualized, and base-free
gain scores. Journal of Experimental Education, 55, 116–118. http://dx
.doi.org/10.1080/00220973.1987.10806443

Woltz, D. J., & Was, C. A. (2006). Availability of related long-term
memory during and after attention focus in working memory. Memory &
Cognition, 34, 668–684. http://dx.doi.org/10.3758/BF03193587

Wöstmann, N. M., Aichert, D. S., Costa, A., Rubia, K., Möller, H. J., &
Ettinger, U. (2013). Reliability and plasticity of response inhibition and
interference control. Brain and Cognition, 81, 82–94. http://dx.doi.org/
10.1016/j.bandc.2012.09.010

Zimmerman, D. W., & Williams, R. H. (1982). Gain scores in research can
be highly reliable. Journal of Educational Measurement, 19, 149–154.
http://dx.doi.org/10.1111/j.1745-3984.1982.tb00124.x

Appendix

Reliability and Correlations for Our Commonly Used Cognitive Measures

Table A1
Component Score Correlation and Internal Consistency for Common Tasks in Our Lab

Task

Study 1 Study 2

Correlation of
component scores

Observed
reliability

Correlation of
component scores

Observed
reliability

Category switch .89 .64ab — —
Number switch .90 .73ab — —
Color Stroop .86 .69ab .89 .63ab

Arrow flanker .87 .69ab .88 .67ab

Antisaccade — .81b — .93b

Operation span — .86 — .89
Symmetry span — .84 — .82
Rotation span — .87 — .85
Raven’s advanced progressive matrices — .82 — .84
Letter sets — .84 — .91
Number series — .83 — .80

Note. Study 1 N � 519; Study 2 N � 314. We previously published some of the Study 1 data in Draheim,
Hicks, and Engle (2016). Stroop and flanker dependent variables are reaction time interference effects. Category
switch and number switch dependent variables are reaction time switch costs. The antisaccade dependent
variable is accuracy rate. Complex span task dependent variables are partial span scores. Raven’s, letter sets, and
number series dependent variables are accuracy rates.
a Internal consistency of the resulting difference score after taking the difference between the component
scores. b Split-half procedure was used to calculate internal consistency; otherwise the value is Cronbach’s alpha.

(Appendix continues)
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Table A3
Zero-Order Correlations of the WMC, Gf, and Attention Control Tasks From Study 2

Task 1 2 3 4 5 6 7 8 9

1. Operation span .89
2. Rotation span .55 .85
3. Symmetry span .57 .71 .82
4. Raven’s advanced progressive matrices .45 .60 .52 .84
5. Letter sets .48 .50 .46 .57 .91
6. Number series .51 .51 .48 .67 .62 .80
7. Antisaccade .30 .47 .45 .49 .38 .39 .93
8. Stroop .13 .26 .24 .23 .21 .18 .16 .63
9. Flanker .23 .25 .28 .37 .28 .28 .28 .15 .67

Note. N � 281–341. WMC � working memory capacity; Gf � fluid intelligence. Stroop and flanker
dependent variables are reaction time interference effects. Correlations involving Stroop or flanker and another
measure were multiplied by (�1) for ease of interpretation such that a positive correlation between any two
variables suggests individuals who performed better on one task tended to also perform better on the other. The
diagonal is the internal consistency estimate for that measure.

Table A2
Zero-Order Correlations of the WMC, Gf, and Attention Control Tasks From Study 1

Task 1 2 3 4 5 6 7 8 9 10

1. Operation span .86
2. Rotation span .53 .87
3. Symmetry span .54 .68 .84
4. Raven’s advanced progressive matrices .51 .59 .36 .82
5. Letter sets .46 .55 .27 .61 .84
6. Number series .55 .56 .32 .65 .68 .83
7. Antisaccade .38 .44 .44 .44 .50 .50 .81
8. Color Stroop .29 .18 .19 .23 .22 .29 .22 .69
9. Arrow flanker .09 .19 .13 .23 .21 .24 .20 .10 .69
10. Visual arrays .43 .48 .46 .58 .54 .52 .43 .21 .17 .84

Note. N � 552. WMC � working memory capacity; Gf � fluid intelligence. Stroop and flanker dependent
variables are reaction time interference effects. Correlations involving Stroop or flanker and another measure
were multiplied by (�1) for ease of interpretation such that a positive correlation between any two variables
suggests individuals who performed better on one task tended to also perform better on the other. These data
were previously reported as Data Set 2 in Shipstead, Harrison, and Engle (2015). The visual array here is the one
described in Shipstead et al. (2015) and is often reported as “VA4” or “VAcolor.” The diagonal is the internal
consistency estimate for that measure. Task switching correlations are not reported here for reasons which we
explain later in the Task Switching section. The Stroop and flanker dependent variables are reaction time
interference effects. The antisaccade dependent variable is accuracy rate. Complex span task dependent variables
are partial span scores. Raven’s, letter sets, and number series dependent variables are accuracy rates. Visual
arrays dependent variable is a capacity score (k).
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