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A B S T R A C T   

Process overlap theory provides a contemporary explanation for the positive correlations observed among 
cognitive ability measures, a phenomenon which intelligence researchers refer to as the positive manifold. Ac-
cording to process overlap theory, cognitive tasks tap domain-general executive processes as well as domain- 
specific processes, and correlations between measures reflect the degree of overlap in the cognitive processes 
that are engaged when performing the tasks. In this article, we discuss points of agreement and disagreement 
between the executive attention framework and process overlap theory, with a focus on attention control: the 
domain-general ability to maintain focus on task-relevant information and disengage from irrelevant and no- 
longer relevant information. After describing the steps our lab has taken to improve the measurement of 
attention control, we review evidence suggesting that attention control can explain many of the positive cor-
relations between broad cognitive abilities, such as fluid intelligence, working memory capacity, and sensory 
discrimination ability. Furthermore, when these latent variables are modeled under a higher-order g factor, 
attention control has the highest loading on g, indicating a strong relationship between attention control and 
domain-general cognitive ability. In closing, we reflect on the challenge of directly measuring cognitive processes 
and provide suggestions for future research.   

Over a century of research has established that measures of cognitive 
ability correlate positively with one another, a phenomenon which in-
telligence researchers refer to as the positive manifold (Spearman, 1904, 
1927). Simply put, people who perform poorly on one cognitive ability 
test tend to perform below average on other tests, too (Carroll, 1993; 
Jensen, 1998). This maxim holds for tests measuring different broad 
cognitive abilities, such as knowledge (i.e., crystallized intelligence), 
reasoning (i.e., fluid intelligence), and memory (i.e., working memory 
capacity), as well as for tests tapping different content areas, such as 
math, verbal, or visuospatial skills. The critical question is not whether 
the positive manifold exists, but why. 

From a statistical perspective, the positive correlations observed 
among broad cognitive abilities can be explained by a unitary, higher- 
order latent factor, known as g (Fig. 1). The g-factor represents general 
intelligence, and it is one of the best variables in the differential psy-
chologist’s toolkit for predicting real-world outcomes such as academic 
achievement, job performance, occupational attainment, income, and, 
to a lesser degree, relationship satisfaction, health behaviors, and mor-
tality (e.g., Brown, Wai, & Chabris, 2021). Obviously, g is important, 

whatever it is. But by itself, the g-factor is merely a statistical description 
of the positive manifold—not a psychological explanation. A psycho-
logical explanation would require researchers and theorists to identify 
the cognitive processes that underlie g, describe why some cognitive 
abilities are more closely related to g than others, and explain why some 
cognitive ability measures “cluster” together, such that groups of tests 
correlate more strongly among themselves than with other measures. 

In this article, we review two theoretical frameworks that provide 
explanations for the positive manifold: process overlap theory (Kovacs & 
Conway, 2016, 2019a, 2019b) and the executive attention framework 
(Burgoyne & Engle, 2020; Kane & Engle, 2002; Shipstead, Harrison, & 
Engle, 2016). In the following sections, we describe each theoretical 
account and identify points of agreement and disagreement between 
them. We also discuss challenges associated with testing each theory and 
conduct re-analyses of data showing that attention control and the g- 
factor are closely entwined. Finally, we provide directions for future 
research aimed at testing each theory. 
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1. Process overlap theory 

One hypothesis that has been suggested as an explanation for the 
positive manifold is that all cognitive ability tests tap a combination of 
domain-specific and domain-general cognitive processes. Domain-spe-
cific processes are cognitive operations which uniquely contribute to a 
particular ability or content area. At a conceptual level, one could 
imagine a set of cognitive processes that are specifically relevant to 
verbal test items, and another set of cognitive processes that are relevant 
to numerical reasoning items. Domain-general processes, on the other 
hand, are cognitive operations that can be brought to bear on a wide 
variety of tasks. Domain-general processes are not bound to a particular 
content area or broad cognitive ability; for example, they are important 
for solving verbal questions, numerical problems, and visuospatial 
items. Broadly speaking, these premises form the basis of a “sampling 
theory” of intelligence (Thomson, 1916), and are consistent with a 
modern sampling theory known as “process overlap theory” (Kovacs & 
Conway, 2016, 2019a, 2019b). 

According to process overlap theory, all cognitive tests draw from the 
same pool of domain-general processes, leading to the positive corre-
lations observed across different assessments of cognitive ability. 
However, only tests that measure the same cognitive ability or content 
area also tap the same domain-specific processes, which leads to the 
“clustering” or grouping of similar tests typically observed in factor- 
analytic work (see Fig. 1). In other words, the strength of the correla-
tion between two measures of cognitive performance is determined—at 
least in part—by the degree of overlap in the domain-general and 
domain-specific cognitive processes that are engaged when performing 
the tasks. Beyond explaining the clustering of ability measures, this idea 
also provides a parsimonious explanation for why some broad cognitive 
abilities, notably fluid intelligence, are more strongly related to the g- 
factor than others; they draw more heavily on domain-general processes 
and less so on domain-specific ones, meaning that more of their variance 
is shared with other abilities. This would lead to larger loadings on a 
general factor. 

Process overlap theory posits that domain-general cognitive pro-
cesses play a critical role in overall cognitive functioning. In fact, they 
are described as creating a “bottleneck” for information processing 
(Kovacs & Conway, 2019b, p. 190). In other words, someone with low 
domain-general abilities will likely perform poorly on all kinds of 
cognitive tests, regardless of whether they have sufficient domain- 
specific abilities for a particular test item. For example, an individual 

with strong verbal skills (i.e., a domain-specific ability) may struggle on 
a reading comprehension test if they lack the domain-general ability to 
control their attention when confronted with a long passage of text. By 
contrast, individuals with sufficiently high domain-general abilities are 
more likely to get a test item wrong because they lack the domain- 
specific ability relevant to the problem at hand. For instance, they 
may have no trouble focusing while reading a long passage, but instead 
struggle because they lack the requisite vocabulary to understand its 
content. Essentially, domain-specific strengths and weaknesses are 
revealed when individuals have sufficient domain-general ability for 
domain-specific factors to matter. Process overlap theory therefore 
provides an explanation for Spearman’s (1927) “Law of Diminishing 
Returns,” the observation that g explains more variance in the positive 
manifold in lower-ability samples than in higher-ability samples (Blum 
& Holling, 2017; Kovacs, Molenaar, & Conway, 2019). Performance on a 
test battery is more multiply-determined in samples with higher 
domain-general ability than in lower-ability samples, meaning that the 
g-factor is comparatively less “important” in samples with higher 
domain-general ability. 

But what are the domain-general processes that give rise to the 
positive manifold? According to process overlap theory, “cognitive tests 
tap domain-general executive processes, identified primarily in research on 
working memory,” and these executive processes are brought to bear in 
an overlapping fashion across a variety of cognitive tasks, explaining 
their positive correlations (Kovacs & Conway, 2016, p. 151, italics 
added). Kovacs and Conway (2016) name some of the cognitive pro-
cesses that appear to play a role in working memory capacity tasks, 
including “goal maintenance, selective attention, and interference res-
olution (inhibition),” a point we return to below (p. 158). However, it is 
worth noting that this line of reasoning raises a distinction across levels 
of analysis: g is unitary from a psychometric or statistical perspecti-
ve—that is, a single latent factor explains (or emerges as a result of) the 
positive manifold; but g is not unitary at the level of the 
brain—according to process overlap theory, g is the result of a number of 
independent domain-general processes, a distinction which Gottfredson 
(2016) notes can be traced back to Spearman (1927). 

Because process overlap theory suggests that the positive manifold is 
the result of many domain-general processes, Kovacs and Conway 
(2016) state that the g-factor should not be “interpreted as a psycho-
logical construct of any kind” (p. 171). This is not a novel concept in 
intelligence research (Gottfredson, 2016). What contrasts process 
overlap theory with many other established theories of intelligence, 

Fig. 1. Hierarchical factor structure of intelligence based on the Cattell-Horn-Carroll (CHC) framework (for a review and discussion of differences between the 
Carroll and Cattell-Horn models, see McGrew, 2009). Ovals represent latent factors; rectangles represent observed measures (i.e., measures of performance on 
cognitive tests). Ellipses (…) indicate that there are more narrow abilities than could be depicted. 
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however, is that the g-factor is re-envisioned as a “formative” variable, 
rather than a reflective latent factor. Stated differently, whereas many 
models of intelligence depict a higher-order g-factor with arrows leading 
from it to broad cognitive abilities (as in Fig. 1), thereby tacitly assuming 
a causal role for g in the generation of the positive manifold, the model 
proposed by process overlap theory draws the arrows in the opposite 
direction, originating from broad cognitive abilities and pointing to-
wards g (see Fig. 2). In short, g is not hypothesized to cause the positive 
manifold, but rather, emerges as a necessary algebraic consequence of it. 

Statistical modeling cannot adjudicate whether g is better specified 
as a reflective latent factor (i.e., Fig. 1) or a formative variable (i.e., 
Fig. 2). Despite process overlap theory’s argument that g should be 
considered formative, our position is that the theory’s tenets are readily 
interpretable within a reflective framework. Specifically, process over-
lap theory argues that 1) there are domain-general executive processes 
that play a role in all sorts of cognitive tasks, and 2) these domain- 
general executive processes cause performance on cognitive tasks to 
correlate positively with one another. Given the hypothesized direction 
of causality implied by the preceding statements, it seems reasonable to 
model the g factor as a reflective latent factor, with paths leading from g 
to broad cognitive abilities. 

As counterpoint, process overlap theory argues that the distinction 
between whether a factor should be considered reflective or formative 
should be based on different grounds: the reality of the ability being 
represented. Kovacs and Conway (2016) argue that only the g-factor 
should be considered formative, and that broad abilities should be 
thought of as reflective. Specifically, they state: “at the level of specific 
abilities, process overlap theory translates into a reflective model. That 
is, tests indeed reflect specific abilities, which do have ontological reality” 
(p. 162, italics added). It is not clear how fluid intelligence, which is 
depicted in Fig. 2 as exclusively sampling domain-general executive 
processes, is more real than g, which also exclusively comprises domain- 
general executive processes in their model. Further complicating 

matters, fluid intelligence and the g-factor often correlate nearly 
perfectly with one another (Kovacs & Conway, 2016). Greater elabo-
ration may be warranted on the distinction between fluid intelligence 
and the g-factor according to process overlap theory, as well as the 
rationale for why g is considered a formative variable while fluid in-
telligence is considered reflective. 

2. Attention control 

With a few notable exceptions, such as the preceding comment about 
whether g should be thought of as a reflective or formative variable, 
process overlap theory broadly aligns with our perspective on intelli-
gence. Our laboratory has argued that the domain-general ability to 
control one’s attention plays a role in a variety of cognitive functions, 
from learning and reasoning to memory and multitasking (Burgoyne & 
Engle, 2020; Burgoyne, Mashburn, Tsukahara, Hambrick, & Engle, 
2021). We define attention control as the ability to focus on task-relevant 
information while resisting interference and distraction by task- 
irrelevant thoughts and events. Borne out of research on working 
memory, attention control has also been referred to as executive atten-
tion, cognitive control, and more generally, executive functioning (Kane & 
Engle, 2002). Attention control supports goal-directed behavior, and is 
particularly important in circumstances in which one’s objective runs 
‘upstream’ against a current of automatic impulses, sensory overload, or 
a maelstrom of divergent thought. For example, individual differences in 
the ability to control attention have been shown to predict self-control 
(Broadway, Redick, & Engle, 2010), emotional regulation (Schmeichel 
& Demaree, 2010), and task engagement (Miller & Cohen, 2001), 
revealing far-reaching effects of attention control on everyday func-
tioning and performance. In general, the control of attention is thought 
to be effortful, and therefore constitutes mental work (Burgoyne, Tsu-
kahara, Draheim, & Engle, 2020). 

We have argued that the ability to control attention supports two 

Fig. 2. Process overlap theory’s formative model of the g-factor. Adapted from Kovacs and Conway (2016) with permission.  
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distinct but complementary domain-general functions (or processes) 
that underpin performance in many cognitive tasks: maintenance and 
disengagement (Burgoyne & Engle, 2020; Burgoyne et al., 2020; Ship-
stead et al., 2016; Fig. 3). Maintenance refers to the cognitive operations 
that support keeping information in an active, highly retrievable and 
usable state. For example, maintenance is required when attempting to 
understand a passage of text amid distractions and interruptions, such as 
when reading a novel in a public park. Sources of interference could 
include thoughts about lunch or the sounds of passersby in con-
versation—in other words, internal thoughts and external events. 
Disengagement, by contrast, refers to removing no-longer relevant in-
formation from active processing and flagging it for non-retrieval. For 
instance, one must disengage from the conversation the passersby were 
having in order to refocus on one’s reading material. Our perspective is 
that most tasks require both information maintenance and disengage-
ment to varying degrees, and that these functions are supported more 
broadly by attention control. As such, maintenance and disengagement 
appear to be viable candidates for a few of the domain-general cognitive 
processes proposed by Kovacs and Conway (2016, 2019a, 2019b). 

Returning to the example of reading amidst distraction and inter-
ference, the ability to maintain focus partially explains why attention 
control predicts individual differences in reading comprehension. In a 
study of over 200 participants, McVay and Kane (2012) found a strong 
correlation between latent factors representing attention control and 
reading comprehension. Furthermore, attention control was negatively 
related to the number of task-unrelated thoughts participants reported 
during the study. In other words, participants with greater attention 
control reported less mind wandering; they were better able to stay on 

task and overcome potential distractions. In turn, less mind wandering 
was associated with better reading comprehension. Taken together, 
task-unrelated thoughts partially mediated the relationship between 
attention control and reading comprehension, suggesting that goal 
maintenance and task engagement are specific mechanisms by which 
attention control and reading performance are linked. 

More recently, Martin et al. (2020) estimated the specific contribu-
tions of maintenance and disengagement to reading comprehension. 
First, they administered tests of working memory capacity, memory 
updating, and fluid intelligence to 567 young adults. Next, they used 
structural equation modeling to partition variance in task performance 
into distinct maintenance and disengagement reflective latent factors. 
Although maintenance and disengagement are subsumed under the 
broader construct of attention control, Martin et al.’s (2020) work 
showed that they can also be separated at the latent level, depending on 
the tasks that are administered to participants. Finally, Martin et al. 
(2020) found that maintenance and disengagement each made sub-
stantial and significant contributions to reading comprehension above 
and beyond one another (βs = .54 and .28, respectively), together ac-
counting for 58% of the variance. This pattern of results indicated that 
both maintenance and disengagement contribute to reading 
comprehension. 

As another example, consider the hypothetical contribution of in-
formation maintenance and disengagement to performance on working 
memory tests. In a typical complex span test such as Symmetry Span 
(Redick et al., 2012), the participant is presented a series of spatial lo-
cations they must memorize in alternation with a distractor task, in 
which the participant must determine whether abstract grid designs are 

Fig. 3. Attention control supports maintenance and disengagement, two cognitive functions important to a wide range of tasks, including working memory and fluid 
intelligence tests. Adapted from Burgoyne and Engle (2020). 
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symmetrical or not. Information maintenance appears critical to work-
ing memory tests, because participants are challenged to remember 
items while actively processing distractors. Disengagement appears to 
play less of a role, although memoranda from previous trials must be 
forgotten to avoid a build-up of proactive interference. Furthermore, the 
distractor task (i.e., the symmetry judgments), once completed, must be 
rapidly removed from active processing so that attention can be focused 
on the next spatial location to be memorized. 

With respect to fluid intelligence tasks, maintenance and disen-
gagement both play a role, although disengagement may be particularly 
important. For example, in Raven’s Matrices (Raven & Court, 1938), the 
performer is shown a pattern consisting of a 3 × 3 grid of symbols with 
the symbol in the bottom right corner missing. The performer’s task is to 
figure out the pattern characterizing the 3 × 3 grid of shapes and select 
the response option that best completes the pattern. Information main-
tenance plays a role because performers must keep track of the rules 
governing the relations between the symbols to work out the solution to 
each item. Disengagement is crucial, however, because once a rule or 
hypothesis has been tested and ruled out, it must be abandoned; the 
performer should not waste time perseverating on previously rejected 
and failed solution attempts. Strategies can differ for solving matrix 
reasoning items—for example, some people choose to eliminate obvi-
ously wrong response options before selecting from those that remain 
(see, e.g., Bethell-Fox, Lohman, & Snow, 1984)—regardless, being able 
to control attention to maintain relevant information and disengage 
from no-longer-relevant information appears critical to solving matrix 
reasoning problems. 

To our knowledge, no study has experimentally tested this hypoth-
esis, but there is supporting evidence to suggest that working memory 
capacity correlates with performance on Raven’s Matrices not simply 
due to storage demands, but likely due to attention control as well. For 
instance, Burgoyne, Hambrick, and Altmann (2019) found that the 
relationship between working memory capacity and reasoning perfor-
mance did not increase as the capacity demands of the items increased, 
and Domnick, Zimmer, Becker, and Spinath (2017) similarly found that 
the working memory capacity-performance relationship was not driven 
by the storage demands of partial solutions. Turning the focus of the 
investigation to attention, Krieger, Zimmer, Greiff, Spinath, and Becker 
(2019) found that the ability to filter relevant information was positively 
related to performance on matrix reasoning items with selective 
encoding demands, indicating an important role for attentional filtering. 
Finally, Carpenter, Just, and Shell (1990) showed using computer sim-
ulations that better matrix reasoning performance could be explained by 
increasing the problem solver’s ability to manage a larger set of goals in 
working memory and induce more abstract relations. In summary, 
attention control appears to be a common thread linking performance on 
working memory capacity and fluid intelligence tests, and indeed, it 
explains part of the positive correlation between these two broad 
cognitive abilities. 

Early evidence for this hypothesis was provided by Engle, Tuholski, 
Laughlin, and Conway (1999), who used latent variable analyses to 
show that working memory capacity was dissociable from short-term 
memory, and that working memory capacity predicted fluid intelli-
gence after accounting for individual differences in short-term memory. 
By contrast, short-term memory did not predict fluid intelligence after 
accounting for individual differences in working memory capacity. This 
suggested that it was the controlled attention component of the working 
memory system, and not the short-term storage component, that drove 
working memory capacity’s relationship to fluid intelligence. 

Following Engle et al. (1999), McCabe et al. (2010) used a battery of 
four executive function tasks to measure attention control directly and 
examine its relationship to working memory capacity, processing speed, 
and episodic memory at the latent level. They found a near-perfect 
correlation between working memory capacity and executive func-
tioning (r = .97), suggesting that the two sets of tasks measured a 
common underlying construct. While they referred to this common 

construct as executive attention, we would refer to it as attention con-
trol. In turn, they showed that the common executive attention factor 
was empirically dissociable from processing speed; the correlation (r =
.79) fell well short of unity. Finally, McCabe et al. (2010) found that 
executive attention predicted individual differences in episodic memory 
even after partialling out variance attributable to age and processing 
speed. They concluded that tests of working memory capacity and ex-
ecutive functioning share a common attentional substrate that is highly 
predictive of higher-level cognition. 

More recently, Unsworth, Fukuda, Awh, and Vogel (2014) suggested 
that the relationship between working memory capacity and fluid in-
telligence was more multifaceted than previously thought. Specifically, 
they measured working memory capacity and fluid intelligence, as well 
as three facets of working memory capacity that they hypothesized 
could mediate the relationship: attention control, short-term storage 
capacity, and retrieval from secondary memory. Their analyses sug-
gested that these three components fully mediated the relationship be-
tween working memory capacity and fluid intelligence, with each 
component accounting for unique variance above and beyond the other 
components. This more nuanced view suggests that while attention 
control is an important aspect of working memory capacity that helps 
explain its relations with other constructs, memory abilities (short-term 
capacity and retrieval from secondary memory) also play a role. 

3. Measuring attention control 

Although the preceding results suggest an important relationship 
between attention control and cognitive functioning, historically, the 
study of individual differences in attention control has been stymied by 
experimental tasks with poor psychometric properties, such as severe 
unreliability. Part of the problem is that the typical outcome measure for 
classic experimental tasks such as the Stroop (Stroop, 1935) and Flanker 
(Eriksen & Eriksen, 1974) is a response time difference score, in which 
performance in one condition is subtracted from performance in 
another. As a case in point, consider the arrow Flanker task. Participants 
must determine the direction that a central arrow is pointing while 
ignoring the arrows surrounding it (i.e., the flanking arrows). There are 
two types of trials, or conditions. On congruent trials (←←←←←), the 
central arrow points in the same direction as the flanking arrows. As a 
result, the flanking arrows do not create interference or bias the 
participant towards making an incorrect response. Congruent trials are 
subjectively easy, and it is thought they can be performed largely 
automatically—that is, without requiring attention to suppress or ignore 
the flanking arrows. Indeed, whether or not the participant restricts 
their attention to the central arrow, they should arrive at the correct 
answer in a matter of moments. On incongruent trials (←←→←←), the 
central arrow points in the opposite direction as the flanking arrows. The 
flanking arrows create interference, biasing the participant towards the 
wrong response. The participant must restrict their attention to the 
central arrow to reduce this interference and provide the correct 
response (see Heitz & Engle, 2007). Incongruent trials are subjectively 
difficult, and decades of experimental research have shown that par-
ticipants are slower to respond accurately on them (Heitz & Engle, 
2007). 

Attention control tasks like the Flanker and Stroop produce reliable 
experimental effects at the group level—that is, people respond slower 
and often less accurately on incongruent trials than on congruent trials. 
Crucially, however, at the level of the individual, the difference score 
created by subtracting performance on congruent trials from perfor-
mance on incongruent trials is notoriously unreliable. As explained by 
Draheim, Mashburn, Martin, and Engle (2019) and Hedge, Powell, and 
Sumner (2018), as the correlation between performance on congruent 
and incongruent trials increases, the reliability of the resulting differ-
ence score decreases, and this is exacerbated by the extent to which the 
measures are less than perfectly reliable (see Fig. 4). In our own work (e. 
g., Draheim, Tsukahara, Martin, Mashburn, & Engle, 2021), we have 
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found that measures of performance on congruent and incongruent trials 
are typically strongly correlated (e.g., r = .80) and have good reliability 
(e.g., α = .90). And yet, given these values, the reliability of the resulting 
difference score is only α = .50, meaning that only 25% of the variance 
in the measure (i.e., .502) reflects the construct of interest—the rest is 
error variance(!). Because unreliability limits validity, measures of 
attention control that use difference scores rarely correlate strongly with 
each other, or with other cognitive tasks that require controlled atten-
tion (Draheim et al., 2019; Hedge et al., 2018; Paap & Sawi, 2016). For 
example, in an influential study of 220 undergraduates, Friedman and 
Miyake (2004) administered nine tasks designed to measure attention 
control; the average internal consistency was less than .60, and the task 
intercorrelations were generally weak (most were below r = .20). 

Before the study of individual differences in attention control could 
advance, measures of the construct needed to improve. To this end, our 
laboratory recently developed new attention control tasks that avoided 
the use of response time difference scores. We took classic paradigms 
such as the Stroop and Flanker and made them adaptive in difficulty (i. 
e., the tasks became easier or more difficult depending on how well the 
participant performed). In particular, participants were instructed to 
respond before a deadline on each trial (e.g., they might have 1 s to 
respond to a Flanker or Stroop item). The deadline became shorter, 
requiring quicker responses, when the participant performed accurately 
within the time limit, and became longer, allowing slower responses, 
when the participant made mistakes or did not respond in time. These 
adaptive tasks were programmed to converge on the same accuracy rate 
across all participants, and the outcome measure was the level of task 
difficulty (i.e., the response deadline duration) at which the participant 
could maintain the critical accuracy rate. We also tested accuracy-based 
tasks which did not rely on reaction time. These accuracy-based tasks 
each had components which were designed to require participants to 
control their attention, for example, to overcome interference from 
distractors or to filter out irrelevant items to reduce cognitive load. 
Broadly speaking, these new attention control tasks performed much 
better than the old versions, demonstrating greater reliability and 
construct validity (Draheim et al., 2021). 

4. Accounting for the positive manifold 

Having remedied some of the measurement limitations of classic 
attention control tasks, we discovered that attention control could 

explain many of the positive correlations observed among broad 
cognitive abilities. To reiterate, we have argued that the primary reason 
working memory capacity correlates with other cognitive abilities such 
as fluid intelligence is because they tap attention control (see, e.g., 
Burgoyne & Engle, 2020). Draheim et al. (2021) corroborated this hy-
pothesis by showing that a latent factor representing attention control 
fully accounted for the relationship between working memory capacity 
and fluid intelligence, depending on which tasks were used to define the 
attention control factor. In particular, the newly developed attention 
control tasks appeared to account for more of the variance in the 
working memory capacity-fluid intelligence relationship than the old 
versions of the attention control tasks, likely due to their improved 
psychometric properties. Furthermore, Draheim et al. (2021) found that 
processing speed did not account for the relationships between attention 
control and working memory capacity and fluid intelligence. 

As another example, attention control appears to explain the rela-
tionship between some broad cognitive abilities and sensory discrimi-
nation ability, operationally defined as an individual’s ability to make 
perceptual distinctions between pairs of stimuli in the visual or auditory 
domain. For example, in an auditory task, a participant might be played 
two tones one after another and asked to indicate which was a higher 
pitch; in a visual task, they might be shown two lines and asked to 
indicate which line is longer. The relationship between sensory 
discrimination ability and general intelligence has been a long-standing 
area of interest for psychologists (Galton, 1883). For instance, Spearman 
(1904) uncovered a near-perfect correlation between sensory discrimi-
nation ability and general intelligence in some of the first factor analytic 
work ever reported. Over one hundred years later, Tsukahara, Harrison, 
Draheim, Martin, and Engle (2020) used latent variable analyses to show 
that attention control fully mediated the relationship between fluid in-
telligence and sensory discrimination ability, as well as the relationship 
between working memory capacity and sensory discrimination ability. 
In other words, the reason sensory discrimination ability correlates 
positively and significantly with these broad cognitive abilities appears 
to be because they mutually depend on the ability to control attention. 

Thus far, we have described how individual differences in the 
domain-general ability to control attention can explain the positive 
correlations observed among some broad cognitive abilities. We have 
identified two mechanisms in particular, maintenance and disengage-
ment, which are supported by attention control, appear to play a role in 
a variety of cognitive tasks, and are consistent with the “domain-general 
processes” that explain the positive manifold according to process 
overlap theory. From this line of reasoning, it seems plausible that 
attention control might account for a piece of the g-factor. 

To test the relationship between attention control and g, we con-
ducted secondary analyses on data from Tsukahara et al. (2020) and 
Draheim et al. (2021). These two studies draw from the same sample of 
participants because they were supported by one large-scale data 
collection effort conducted at the Georgia Institute of Technology from 
August 2017 to November 2018. The dataset comprises 10 measures of 
attention control (the best performing four from Draheim et al., 2021 are 
chosen for this analysis: Antisaccade, Flanker Adaptive Deadline, Sus-
tained Attention to Cue, and Selective Visual Arrays; all tasks avoid the 
use of response time difference scores), three measures of working 
memory capacity (Operation Span, Symmetry Span, and Rotation Span), 
three measures of fluid intelligence (Raven’s Advanced Progressive 
Matrices, Letter Sets, and Number Series), and three auditory measures 
of sensory discrimination ability (Pitch, Loudness, and Duration). The 
sample size for these variables is N = 399, which exceeds the minimum 
sample size needed for latent variable analyses to converge on stable 
parameter estimates (Kline, 2015). The participants were recruited from 
Georgia Tech as well as the greater Atlanta community, with consider-
able effort invested in recruiting a sample representing a broad range of 
ability and socioeconomic status. The sample ranged in age from 18 to 
35. Further details about the study procedures, sample, exclusions, task 
descriptions, and measures can be found in Draheim et al. (2021) and 
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Fig. 4. The reliability of a difference score (Y-axis) decreases as the correlation 
between the condition scores increases (X-axis). Each line represents the reli-
ability of the difference score when the reliability of the condition scores is set 
to r(xx) = .60, .70, .80, or .90. For a typical attention control task, one might 
find correlations between conditions to be around .80, and the reliability of 
each condition to be around .90, leading to a difference score reliability of .50, 
depicted by a black circle in the figure. Note that if the reliability of each 
condition score simply decreased from .90 to .80 while the correlation between 
them remained .80, the resulting difference score would have a reliability of 
zero. Adapted from Draheim et al. (2019). 
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Tsukahara et al. (2020), and a list of all publications based on this data 
collection effort can be found at https://osf.io/be34k/. 

The purpose of the following analyses is to investigate a common 
argument made by process overlap theory and the executive attention 
framework: attention control should be highly related to g, and as a 
result, largely explain the covariation between broad cognitive ability 
factors. To test whether attention control explains the positive correla-
tions observed among broad cognitive abilities, we ran three latent 
factor models using maximum likelihood estimation. In the first model, 
we specified latent factors representing attention control, working 
memory capacity, fluid intelligence, and sensory discrimination ability, 
and allowed them to correlate (i.e., a correlated-factors model; Fig. 5). 
Based on prior research (e.g., Draheim et al., 2021), we expected these 
latent factors to correlate positively and significantly. In the second 
model, we specified a higher-order g-factor predicting all cognitive 
abilities, to determine which cognitive ability factor had the highest g- 
loading (Fig. 6). In the third model, we replaced the g-factor with a latent 
factor representing attention control. This attention control factor was 
specified to predict individual differences in the lower-order cognitive 
ability factors (a common-cause model; Fig. 7). The residuals of the 
lower-order cognitive ability factors (R1 through R3 in Fig. 7) represent 
the variance in each cognitive ability not explained by attention control; 
these residuals were allowed to correlate in order to quantify their 
magnitude. 

Fig. 5. Correlated-factors model (N = 399). χ2(59) = 137.85, p < .001, CFI = .95, RMSEA = .06 [.05, .07]. SACT = Sustained Attention to Cue Task. For the Flanker 
Deadline task and Auditory Discrimination Ability factor, high ability participants should have smaller deadline and threshold values, leading to negative re-
lationships. To avoid confusion, these paths are sign-reversed to make them consistent with the “all positive correlations” heuristic for the positive manifold. 

Fig. 6. A structural equation model with a higher-order g-factor (N = 399). 
χ2(60) = 172.60, p < .001, CFI = .93, RMSEA = .07 [.06, .08]. Lower-order 
factor indicators are identical to those depicted in Fig. 5 but are not shown 
for visual clarity. 
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The question of interest—whether attention control accounts for the 
positive manifold—is addressed by examining the magnitude of the 
residual correlations in the common-cause model (Fig. 7). If, for 
example, the residual correlations are no longer statistically significant, 
this would indicate that attention control fully explains the positive 
correlations among the broad cognitive abilities. On the other hand, the 
residual correlations may be statistically significant but weaker than the 
correlations in the correlated-factors model depicted in Fig. 5. We can 
test this by comparing the decrement in model fit when these correla-
tions are freely estimated to when the residual correlations are con-
strained to be equal to the values of the correlated-factors model. If the 
model fits significantly worse when the residual correlations are con-
strained, this would suggest that attention control partially explains the 
positive correlations among broad cognitive abilities, but that other 
factors may also play a role. 

As seen in Fig. 5, the correlations between the latent factors repre-
senting broad cognitive abilities were all positive, substantial, and sta-
tistically significant (average r = .66). The strongest correlation was 
observed between attention control and auditory discrimination ability 
(r = .83), whereas the weakest correlation, still moderate in magnitude, 
was between working memory capacity and auditory discrimination 
ability (r = .38). The results depicted in Fig. 5 are consistent with more 
than one hundred years of cognitive ability research; measures of 
cognitive ability tend to correlate positively with one another. 

Next, we analyzed a second model to examine the relationship be-
tween the four latent factors and a general factor. Theoretically, if 
domain-general executive processes are largely responsible for the cor-
relation between different cognitive abilities, and attention control 
captures these domain-general executive processes better than the other 

latent factors in the model, then attention control should have the 
highest loading on the general factor. As shown in Fig. 6, the attention 
control and general factor were virtually isomorphic to one another, 
with a loading of .98. All other loadings were also strong and positive, 
ranging from .72 to .81. 

Finally, we ran a model with attention control standing in for g as a 
predictor of working memory capacity, auditory discrimination ability, 
and fluid intelligence, and estimated the residual correlations among the 
latent ability factors. Note that this model is not a hierarchical model, 
but rather a one-level structural equation model with one predictor 
factor (attention control) and three dependent variables/factors 
(working memory capacity, auditory discrimination ability, and fluid 
intelligence). As shown in Fig. 7, the correlations between broad 
cognitive abilities were largely explained by the attention control factor. 
That is, the path from attention control to each broad cognitive ability 
was substantial and significant, ranging from .70 to .83. More important 
for the present purposes, the residual correlations among the broad 
cognitive abilities after accounting for attention control were reduced to 
either non-significance, or were much smaller than those shown in the 
correlated factors model (Fig. 5). Specifically, the residual correlations 
between fluid intelligence and auditory discrimination ability was 
reduced to non-significance (compare r = .58, p < .001 in Fig. 5 to r =
− .13, ns in Fig. 7). Although still statistically significant, the residual 
correlation between working memory capacity and fluid intelligence 
was drastically reduced (compare r = .70, p < .001 in Fig. 5 to r = .37, p 
= .003 in Fig. 7; the R2 decreased from .49 to .14), and constraining the 
residual correlation to equal the bivariate correlation from Fig. 5 
significantly reduced model fit, Δχ2(1) = 40.41, p < .001. The residual 
correlation between working memory capacity and auditory discrimi-
nation ability is more curious. While significantly different from the 
initial bivariate correlation, Δχ2(1) = 68.95, p < .001, accounting for 
attention control led to a significant, sign-reversed residual correlation 
between working memory capacity and auditory discrimination ability 
(compare r = .38, p < .001 in Fig. 5 to r = − .48, p = .001 in Fig. 7). We 
note that this is unsurprising given that the same pattern was observed 
in Tsukahara et al. (2020), and these analyses were conducted on the 
same data. That said, a substantive explanation for this sign-reversal is 
elusive. Our interpretation of these results is that attention control 
accounted for the positive relationship between working memory ca-
pacity and sensory discrimination ability. 

More broadly, it seems that attention control accounted for 
most—but not all—of the positive correlations observed among the 
broad cognitive ability factors in the present dataset. Of course, a 
different set of cognitive ability factors could lead to a different pattern 
of results, and other factors could still play a role after accounting for 
attention control. It would be interesting to include measures of crys-
tallized intelligence in future work, because the present analyses are 
primarily focused on fluid abilities. Whether attention control would 
load as highly on the g-factor or account for as much of the positive 
manifold if crystallized intelligence measures were included in the 
model is an open question. In future work, we plan to extend this 
approach by including additional measures of each construct, including 
more broad cognitive abilities in the model, and recruiting a larger 
sample to test whether attention control explains more of the positive 
manifold in lower-ability samples relative to higher-ability samples, a 
hypothesis consistent with Spearman’s (1927) Law of Diminishing 
Returns as well as process overlap theory (Kovacs et al., 2019). 

5. Discussion 

A growing body of evidence suggests that attention control can 
explain most of the covariation between many broad cognitive abilities, 
such as fluid intelligence, working memory capacity, and sensory 
discrimination. In the analyses presented above, we showed that: 1) 
latent factors reflecting broad cognitive abilities correlate positively 
with one another; 2) when a higher-order g factor is specified to explain 

Fig. 7. Common-cause model (N = 399). χ2(59) = 137.85, p < .001, CFI = .95, 
RMSEA = .06 [.05, .07]. Factor indicators are identical to those depicted in 
Fig. 5 but are not shown for visual clarity. 
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the covariance between these latent factors, an attention control factor 
has the strongest loading on the g factor; and 3) when attention control is 
specified as the higher-order factor, it largely accounts for the positive 
manifold, because the residual correlations among the broad cognitive 
ability factors are reduced substantially, at times to non-significance. 

This is not to say that attention control fully explains the correlation 
between all broad cognitive abilities; our models lacked a crystallized 
intelligence factor as well as other cognitive ability factors, and after 
accounting for attention control, some residual correlations remained 
statistically significant. How might the results have differed had we 
included other measures of cognitive abilities? If attention control is 
more important for fluid abilities than for crystallized abilities, then 
including knowledge-based measures of cognitive ability might have 
rendered attention control less closely related to the g-factor than it was 
in the present study. As is the case in all psychological research, our 
conclusions are limited by the kind and quality of the measures that 
were administered to participants. Another limitation of the modeling 
approach we used is that we could not correlate the residuals of the 
lower-order cognitive ability factors in the hierarchical g-factor model 
(Fig. 6) because the model would be locally underidentified. Presum-
ably, a g-factor identified only by the positive correlations between 
lower-order cognitive ability factors would outperform any other factor 
in terms of accounting for the correlations among the lower-order 
cognitive ability factors. This appears to be a necessary consequence 
of the statistical modeling approach that allows for the specification of a 
higher-order g-factor that is only identified by the positive correlations 
among measures. With these limitations in mind, the evidence presented 
here suggests that attention control is a piece of the intelligence puzzle, 
and perhaps a bigger piece than was considered until recently. We 
interpret this evidence as suggestive, not conclusive, and hope to unpack 
the specific mechanisms by which attention control explains the corre-
lations between broad cognitive abilities in future work. 

The preceding analyses were motivated in part by process overlap 
theory, which argues that cognitive tests tap domain-general executive 
processes and domain-specific processes, and that the positive manifold 
is caused by tests’ mutual dependence on domain-general executive 
processes (Kovacs & Conway, 2016). In general, our executive attention 
perspective is consistent with process overlap theory, although it also 
differs in significant ways. We agree that performance on any single task 
is likely determined by multiple domain-specific and domain-general 
processes. We also agree that domain-general executive processes 
likely serve as a bottleneck constraining task performance, and that 
domain-general processes are heavily sampled by tests of fluid intelli-
gence and working memory capacity, although this premise requires 
further elaboration. As of yet, domain-general executive processes have 
remained largely unspecified by process overlap theory. Addressing this 
gap, we have suggested that maintenance and disengagement are two 
domain-general executive functions that are supported by attention 
control and are sampled to different degrees in working memory ca-
pacity and fluid intelligence tests. Finally, we also agree that on its own, 
a higher-order g factor lacks a cognitive mechanism and is merely a 
statistical explanation for the positive manifold. 

Where we diverge from process overlap theory is in our emphasis on 
attention control as a latent construct that can be reliably and validly 
measured and one that explains much—though probably not all—of the 
positive manifold. We think of attention control as an ability which al-
lows individuals to organize cognitive processing around objectives. 
People that can organize cognition in a goal-relevant manner (i.e., those 
with high attention control) will perform well on many types of tasks, 
whereas those lacking the ability to control attention will struggle on 
many types of tasks. Our definition and measurement of attention con-
trol does not negate the existence of distinct domain-general executive 
processes. In fact, it includes at least two such functions, maintenance 
and disengagement, which are deployed by the executive control of 
attention to meet the processing demands of the task. 

Some have argued that there is no need to posit an overarching, or 

supervisory, executive attention system governing multiple distinct ex-
ecutive functions. For example, Rey-Mermet, Gade, and Oberauer 
(2018) examined the factor structure of 10 inhibition measures that 
were computed using response time difference scores in a sample of 232 
younger and older adults. They found that a model with two correlated 
latent factors—one representing inhibition of pre-potent responses and 
another representing resistance to distractor interference—provided 
better fit to the data than a single-factor model or an orthogonal two- 
factor model as indicated by chi-square tests. That said, many of the 
factor loadings were low, and furthermore, Bayesian hypothesis testing 
did not provide strong evidence in favor of any of the models compared 
to the alternatives. On the basis of these results, Rey-Mermet et al. 
(2018) concluded that “tasks used to assess inhibition do not measure a 
common underlying construct, but the highly task-specific ability to 
resolve the interference arising in that task” (p. 515). More recently, 
Rey-Mermet, Gade, Souza, von Bastian, and Oberauer (2019) used 
accuracy-based difference score measures of executive control and 
found similar results: the measures did not cohere on a unitary latent 
factor and also had weak relationships with fluid intelligence and 
working memory capacity. There are many reasons why some re-
searchers may struggle to find measures that cohere on a latent attention 
control factor, and we discuss a number of plausible explanations for 
Rey-Mermet et al.’s results elsewhere (see Draheim et al., 2021, pp. 
265–266). As we have noted, there are serious methodological issues 
impacting the measurement of individual differences in attention con-
trol (e.g., the use of difference scores) that continue to stymie efforts to 
build and test comprehensive theories of intelligence. 

6. Challenges associated with measuring cognitive processes 

For instance, because no single task is a process-pure measure of the 
construct it is intended to measure, it is difficult to identify the cognitive 
processes underlying individual differences in performance. One reason 
is that just because a cognitive process is required to perform a task does 
not necessarily mean that the cognitive process will be reflected in in-
dividual differences in task performance. There needs to be sufficient 
demand on a cognitive process to reveal differences between individuals 
on that process. The demand that is placed on a cognitive process will 
depend on many factors including task design, the strategy used by the 
individual, their knowledge and abilities, and even their demographic 
characteristics (e.g., children vs. adults). 

Process overlap theory shifts the focus away from g as a psycholog-
ical or biological explanation of the positive manifold and instead em-
phasizes the overlap of cognitive processes that are tapped by various 
tasks. The challenge for researchers moving forward is to better un-
derstand the cognitive processes that give rise to individual differences 
in task performance in order to understand why one measure may 
correlate more strongly with some measures than others. As highlighted 
above, this is no easy feat and will likely require us to think simulta-
neously as experimentalists and differential researchers. Although the 
two disciplines think of reliability and validity in different ways, both 
bring strengths to the table that the other does not (e.g., Burgoyne et al., 
2020; Cronbach, 1957). 

Part of the tension between the experimentalist and differential 
traditions stems from the question of “how can we isolate cognitive 
processes?” For the differential researcher, one can administer multiple 
heterogeneous tasks that are thought to tap common and unique pro-
cesses and then use latent factors to pull apart the common variance 
from the unique variance at the between-subject level. For the experi-
mentalist, one can systematically manipulate features of a task to control 
for extraneous and confounding variables at the within-subject level. 
When measuring attention control, for example, experimentalists have 
often used difference scores to subtract performance in one condition 
largely thought to reflect automatic processes (e.g., Flanker congruent 
trials) from another condition largely thought to reflect controlled 
processes (e.g., Flanker incongruent trials). 
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In general, however, the use of difference scores is based on the 
highly questionable assumption of additive factors. In fact, Draheim 
et al. (2021) pointed out that reaction time difference scores in Flanker 
and Stroop tasks are not process pure, despite the use of contrasting 
conditions, and are contaminated with individual differences in pro-
cessing speed. Furthermore, the cognitive processes brought to bear on 
single trials and/or in contrasting conditions are not isolated but instead 
overflow across the entire administration of a task; in other words, 
cognition is a dynamic process. This is demonstrated in phenomena such 
as the sequential congruency effect and post-error slowing. These nu-
ances, among others, make it challenging to validate and specify what 
domain-specific and domain-general processes are contributing to in-
dividual differences in task performance. 

There are promising modeling techniques to better combine differ-
ential and experimental methods, such as hierarchical linear modeling 
(Rouder & Haaf, 2019), generative modeling (Haines et al., 2021), and 
fixed-links modeling (Schweizer, 2006). Additionally, combining phys-
iological measures (EEG, eye tracking, heart rate, neuroimaging) with 
behavioral data can help elucidate the processes underlying task per-
formance (see Fukuda & Vogel, 2009; Vogel, McCollough, & Machi-
zawa, 2005). These techniques may pave the way for greater 
understanding in future research. 

7. Conclusion 

Process overlap theory provides a plausible account of the positive 
manifold. That said, some key aspects of the theory, such as whether g is 
formative or reflective, may benefit from greater elaboration and spec-
ification. More importantly, there is still considerable work to be done 
addressing measurement limitations before the theory can be empiri-
cally substantiated or falsified in a convincing manner. Nevertheless, 
knowing ‘where to point the microscope’ will help organize researchers 
around a common goal and likely generate new discoveries in the years 
ahead. 
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