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Working memory capacity is an important construct in psychology because of its relationship with many
higher-order cognitive abilities and psychopathologies. Working memory capacity is often measured
using a type of paradigm known as complex span. Some recent work has focused on shortening the
administration time of the complex span tasks, resulting in different versions of these tasks being used
(Foster et al., 2015; Oswald, McAbee, Redick, & Hambrick, 2015). Variations in the complex span tasks,
such as the number of set sizes, can lead to varying power to discriminate individuals at different ability
levels. Thus, research findings may be inconsistent across populations due to differing appropriateness
for the ability levels. The present study uses a combination of item response theory and correlational
analyses to better understand the psychometric properties of the operation span, symmetry span, and
rotation span. The findings show that the typical administration of these tasks, particularly the operation
span, is not suitable for above average ability samples (Study 1; n � 573). When larger set sizes are added
to the tasks (Study 2; n � 351), predictive validity and discriminability is improved for all complex span
tasks, however the operation span is still inferior to the spatial tasks. The authors make several
conclusions about which tasks and set sizes should be used depending on the intended population, and
further suggest avoiding the standard-length operation span for average or higher ability populations.

Public Significance Statement
The authors take a novel approach at further understanding a set of popular tasks used to measure
working memory capacity. By using an advanced modeling technique known as item response
theory, we demonstrate that the most widely used of these tasks, the operation span, is not good at
measuring individuals of high cognitive ability. The authors increase the number of to-be-
remembered items in the tasks and demonstrate that they are much better at measuring higher-ability
individuals.
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Working memory (WM) has become an increasingly important
concept in psychology since the early 1970s, when researchers
began to focus on the active and controlled mechanisms of primary
memory more than the passive characteristics of short-term mem-
ory (STM; e.g., Baddeley & Hitch, 1974). Work investigating
individual differences in WM began shortly thereafter, and with
this new line of research came the first measure of WM capacity
(WMC): the reading span (Daneman & Carpenter, 1980). Dane-
man and Carpenter demonstrated that WMC, as measured by the

reading span, correlated quite strongly with reading comprehen-
sion. This was an important finding because measures of STM
typically have low or even nonsignificant correlations to higher-
order cognitive abilities (Dempster, 1981). Tasks similar to the
reading span (known as complex span tasks) have since emerged,
and performance on these tasks correlate strongly with a wide
array of cognitive abilities and real-world behavior, including
following directions (Engle, Carullo, & Collins, 1991), multitask-
ing (Hambrick, Oswald, Darowski, Rench, & Brou, 2010), lan-
guage learning (e.g., Baddeley, Gathercole, & Papagno, 1998),
language comprehension (e.g., Daneman & Merikle, 1996), and
attentional control (e.g., Kane, Bleckley, Conway, & Engle, 2001).
Most notably for cognitive psychology, complex span performance
correlates strongly with measures of fluid intelligence (Gf), indi-
cating a strong relationship between WMC and the ability to
reason in novel situations (Ackerman, Beier, & Boyle, 2005;
Engle, Tuholski, Laughlin, & Conway, 1999; Kane, Hambrick, &
Conway, 2005; Oberauer, Schulze, Wilhelm, & Süß, 2005).
Within the realm of clinical psychology, WM deficits have been
linked to multiple psychopathologies such as schizophrenia (e.g.,
Silver, Feldman, Bilker, & Gur, 2003), attention-deficit/hyperac-
tivity disorder (ADHD; e.g., Martinussen, Hayden, Hogg-Johnson,
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& Tannock, 2005), and clinical depression (e.g., Christopher &
MacDonald, 2005). To emphasize the importance of WM in clin-
ical research; a PsycINFO search using the keywords “working
memory” and “schizophrenia” from 1995 to 2015 produced 2,115
articles published in academic journals. Analogous searches for
“working memory” and “ADHD” resulted in 698 articles, and
“working memory” and “depression” resulted in 813.

In regards to measuring WMC, the complex span tasks have
seen increasing use because of the demonstrably high reliability of
partial span scores (e.g., Redick et al., 2012), their high predictive
validity in terms of predicting other cognitively complex abilities,
and their accessibility our on our lab website (http://englelab.gatech
.edu/). This popularity has both benefits and drawbacks. On the
positive side, researchers can have confidence in their results
without being concerned about the reliability and validity of their
measures. Furthermore, having uniformity in task administration
permits easier comparison across studies from different labs. On
the negative side, it may be the case that the tasks are not suitable
for all populations and it is possible that researchers are not using
the correct task given characteristics of their sample or study in
general. In particular, the operation span is a task that we have
often found problematic in our research in that it typically has a
weaker relationship with other cognitive abilities than the other
complex span tasks and has smaller loadings on a latent WMC
factor. It is our opinion that over use of the operation span and
underutilization of some of the other complex span tasks have
resulted in some researchers finding lower effect sizes than would
be expected, or even failing to find significant results outright.

An additional drawback of the tasks is the amount of time
required to administer them. To reliably measure WMC, a battery
of three complex span tasks requires approximately an hour, with
the operation span itself taking around 30 min. To this end, recent
work has focused on making these tasks more efficient by reducing
the number of trials without sacrificing their psychometric prop-
erties (e.g., Foster et al., 2015; Oswald et al., 2015). The efforts to
shorten the complex span tasks have made them more accessible to
researchers who, due to time or other resource constraints, would
not otherwise be able to conduct WM work. However, the avail-
ability of the shortened tasks also results in different versions of
the task being used. As such, no longer is there one single version
of any specific complex span task, as researchers can choose to
administer the standard-length version, the Foster et al. (2015)
version with fewer blocks, or the Oswald et al. (2015) version with
fewer blocks, fewer set sizes, and less practice. It is also common
for researchers to modify the existing tasks to fit their study needs.
Consequently, results and research findings may be inconsistent
across studies, making cross-study comparisons more difficult.

An important consideration is how the difficulty and other
psychometric properties of the different complex span tasks match
characteristics of both the tested population and the individual
subject. With multiple versions of the tasks, some will inevitably
be better administered to particular populations than others, and
some will outperform others in different regards. This raises ques-
tions such as to what extent do the different set sizes among the
tasks contribute to the psychometric properties of the task as a
whole. Are some set sizes more useful in prediction than others? In
what ways do the different administrations of the complex span
tasks differ, and in what ways do the tasks themselves differ?
Another consideration is how the complex span tasks discriminate

in terms of high and low ability subjects. For instance, some
measures of cognitive ability are more suited to lower-ability
subjects due to having a lower overall difficulty and thus providing
the most information at the low end of the ability spectrum. But the
complex spans are commonly administered to individuals at all
ability ranges, as they have been employed in children, clinical,
and aging studies along with given to both high-achieving univer-
sity students and low socioeconomic status community members
alike.

The aforementioned questions are difficult to answer with the
limited information provided by classical test theory, and thus in
the present studies we will also use item response theory (IRT) to
further explore the nature of the complex span tasks. Overall, our
goals are to obtain a better idea of which complex span tasks are
better for different situations, which set sizes are overall more
predictive and discriminating both within and across tasks, and to
use a different approach than Foster et al. (2015); Oswald et al.
(2015) in investigating how these tasks can be further made more
efficient without sacrificing reliability and validity. Our work can
also potentially illuminate other shortcomings of the complex span
tasks that have not been reported to date. Ultimately, it is our hope
that this work will lead to more in-depth analyses on the complex
span tasks and that they are eventually made adaptive such that
different tasks, stimuli, and set sizes are administered based on the
individual subject’s ability level.

Introduction to the Complex Span Tasks

The complex span tasks follow a similar design, with the prin-
ciple difference being the nature of the stimuli. They are in essence
dual tasks with both a storage and a processing component. The
processing component is interweaved between the to-be-
remembered stimuli to prevent rehearsal, thus serving as a distrac-
tor. The subject’s job is to maintain an active representation of the
to-be-remembered stimuli in the face of this distraction, and as
proactive interference builds up from trial-to-trial. To ensure that
subjects are fully attending to the processing portion of the task
and not rehearsing the to-be-remembered stimuli instead, the pro-
cessing trials have a subject-adaptive response deadline equal to
2.5 SDs above mean reaction time (RT) on the practice trials. In
addition, data from subjects who do not perform the processing
trials with at least 85% accuracy are typically thrown out. The
presence of the processing (i.e., distractor) trials is the main
distinguishing characteristic of complex span tasks, and differen-
tiates them from traditional simple span tasks and other measures
of STM.

Figure 1 shows three of the common complex span tasks. In the
operation span, subjects make a judgment as to if a simple arith-
metic string is correct or not, and the to-be-remembered stimulus
is a letter. In the symmetry span, subjects make a judgment as to
if a figure is symmetrical about the vertical axis, and the to-be-
remembered stimulus is a particular cell within a 4 � 4 grid. In the
rotation span, subjects make a judgment as to if the letter displayed
can be rotated to be a forward-facing letter, and the to-be-
remembered stimulus is either a large or small arrow pointing in
one of eight possible directions. Because the rotation and sym-
metry span are spatial and have more complex to-be-
remembered stimuli than the operation span, they are more
difficult and as such the standard administration only includes
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set sizes 2, 3, 4, and 5 for these tasks for a possible partial span
score of 42.

Overview of IRT

IRT is a psychometric assessment and modeling technique with
many advantages over classical test theory (for a critique of
classical test theory, see Embretson, 1996). Whereas classical test
theory focuses primarily on scores for an entire test, IRT allows for
more sophisticated latent analysis of items independent from the
test as a whole. In addition, IRT can estimate parameters on both
the item and individual side independently, permitting a more
nuanced investigation into person ability level, item difficulty,
item discrimination, and so forth. The main advantage of IRT over
classical test theory is that items are treated separately and inde-
pendent from one another, and thus it is not assumed that each item
in a test is equally difficult or contributes equally to the overall test
score.

For our purposes, we are most interested in the item difficulty
(�) parameter for both individual items and the test as a whole.

When looking at binary or dichotomous data, the item difficulty
estimate of an item equates to a particular subject ability level (�;
conceptually analogous to a Z-score) such that a subject of the
same ability level has a 50% chance of getting an item correct and
information is maximized at that point (for models without param-
eters for guessing). For example, if an item with a � of 1 is given
to a subject with a � of 1, the subject has a 50% chance to answer
that item correctly and information for that subject is maximized.
Note that information is inversely related to standard error, and
thus it is desirable to match item difficulties with the ability level
of subjects to minimize error and maximize discrimination. When
looking at polytamous data (such as the data presented here), it is
not appropriate to interpret equivalent item difficulty and ability
level parameters in terms of the subject having a 50% chance to
answer the item correctly, but it is still desirable to match item
difficulty with ability level for the same reasons as with binary
data. Item discrimination estimates (�) will also be presented. This
parameter relates to the slope of the item characteristic curve and
gives information about how narrowly or broadly an item can

Figure 1. Illustration of three common complex span tasks. Subjects are shown a processing or distractor task
and given their mean RT on practice trials � 2.5 � their SD to respond. Then the to-be-remembered stimulus
is displayed. This process repeats a number of times until a recall screen appears. In the standard-length tasks,
each set size from 3 to 7 is administered three times in the operation span, and each set size from 2 to 5 is
administered three times in the symmetry and rotation span. See the online article for the color version of this
figure.
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differentiate based on ability level. A high � value for an item
means the item has a steeper characteristic curve and narrowly
differentiates subjects by ability level. Because we are interested in
the general location of different set sizes and not the precision, we
will not discuss item discrimination of the complex span tasks in
much detail.

Study 1

Study 1 was a large-scale correlational study consisting of 50
cognitive tasks administered over four 3-hr long sessions and two
research locations. In Study 1 we are interested in the properties of
the complex span tasks under typical administration (i.e., three
blocks of set sizes 2–7 for verbal tasks and set sizes 3–5 for spatial
tasks).

Method

Participants. Sessions were run at Georgia Tech and Indiana
University-Purdue University. Proper ethical guidelines were fol-
lowed and the experimental protocol received approval from the
Institutional Review Board of both universities. Our screening
process required all subjects to be native English speakers aged
18–35 with normal or corrected-to-normal vision. A total of 585
subjects completed all four sessions, and the final sample consisted
of 573 subjects (214 Georgia Tech students, 84 Indiana University-
Purdue University students, 246 individuals from the greater At-
lanta community of which 81 indicated they were attending or had
attended college, and 29 without valid demographic information).
The mean age for the sample was 22.4 years (SD � 4.5 years).

Tasks: Complex span.
Automated operation span. In the automated operation span

(Unsworth, Heitz, Schrock, & Engle, 2005), subjects recall a series
of serially presented items, the presentation of which is interrupted
by a simple processing task. The to-be-remembered items are
letters from the English alphabet. The processing task is a simple
mathematical equation in which subjects must indicate if it is
correct (e.g., “(2 � 2) � 1 � 5”) or not (e.g., “(3 � 4) – 3 � 8”)
before the next letter of a sequence is presented (see Figure 1). Set
sizes varied between 3 and 7 items. These sets were presented in
a randomized order, with the constraint that a given set could not
repeat until all sets had been presented. Each set size was used
three times. The dependent variable is the partial span score, which
is the total number of letters recalled in proper serial position.

Automated symmetry span. In the automated symmetry span
(Unsworth, Redick, Heitz, Broadway, & Engle, 2009), subjects
recall a series of serially presented items, the presentation of which
is interrupted by a simple processing task. The to-be-remembered
items are particular cells within a 4 � 4 grid. The processing task
requires subjects to judge whether or not a figure in an 8 � 8 grid
is symmetrical (see Figure 1). Set sizes were two to five items. The
sets were presented in a randomized order, with the constraint that
a given set size could not repeat until all sets had been presented.
Each set was used three times. The dependent variable is the partial
span score, which is the total number of letters recalled in proper
serial position.

Automated rotation span. The automated rotation span (Har-
rison et al., 2013) consists of to-be-remembered items that are a
sequence of long and short arrows, radiating from a central point.

The processing task required subjects to judge whether a rotated
letter was forward facing or mirror-reversed (see Figure 1). Set
sizes varied between two and five items. The sets were presented
in a randomized order, with the constraint that a given set could not
repeat until all other sets had been presented. Each set was used
three times. The dependent variable is the partial span score, which
is the total number of letters recalled in proper serial position.

Analysis. All analyses were conducted using IRTPRO soft-
ware using the generalized partial credit model (for more infor-
mation on this model, see Muraki, 1992). This particular model
was selected because the response data are polytomous and we
also assume that item discrimination will not be the same across
different set sizes. Individual set sizes (e.g., 3 for the operation
span) were treated as independent items to examine the differences
in item difficulty estimates for each set size in each task. For
estimating the item parameters, ability level was specified as
N(0,1) such that subject’s ability level followed a normal distri-
bution with a mean of 0 and SD of 1. We constrained item
discrimination and item threshold across blocks of the same task
for each set size (e.g., set size 3 in block 1 and set size 3 block 2),
as these are assumed to be equivalent items.

Estimation was conducted using marginal maximum likelihood,
with 30 quadrature points and the logit scale. Note that although
we provide overall model fit statistics (e.g., �2loglikelihood),
these values are most useful for model comparison, and not par-
ticularly informative when looking at one model in isolation (see
Kang, Cohen, & Sung, 2005). We also report fit estimates for
individual items, which are more informative for our purposes.

For each task, a total information curve will be shown. In
classical test theory, the standard error of measurement is used as
an indicator of the stability of the test score, with smaller standard
errors indicating more dependable true score estimates. In IRT, the
same is true, but standard error of estimate is allowed to vary for
different ability levels. As such, the total information curve (in-
formation being inversely related to standard error) displays how
well different ability levels are being estimated by the test in
question (Thorpe & Favia, 2012). Thus, we can learn about how
well the complex span tasks are measuring individuals of differing
ability based on the location of the ability level information curve
peak. If the information curve peaks at � � �1, for instance, this
suggests that the test is better suited for lower ability subjects,
particularly those 1 SD below mean performance. It is important to
note that the distribution of subject ability levels do not affect the
resulting information curve, and thus these curves are invariant to
samples of differing ability levels.

Results

Classical test theory. To get a better idea of the performance
differences across our sample, descriptive statistics are provided
on Table 1, broken down by which college subjects reported
attending (Georgia Tech, Indiana University-Purdue University,
and Atlanta community). Georgia Tech students (SAT average of
1430 out of 1600 for admitted freshmen) outperformed Indiana
University-Purdue University students (SAT average of 1080 out
of 1600 for admitted freshmen), who in turn outperformed com-
munity members. It is worth mentioning that community members
who reported attending college significantly outscored community
members who did not operation span (M � 51 and M � 45,
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respectively) but not the symmetry span (M � 22 and M � 23) or
rotation span (M � 21 and M � 20).

We also present descriptive statistics by set size for each task
across the entire sample to explore potential ceiling or floor effects
(see Table 2). Mean performance in the symmetry and rotation
span appears to more or less plateau when more than two items are
administered, however variance continues to increase with larger
set sizes. In the operation span, performance plateaus around set
size 5, though variance also continues to rise with large set sizes.
For all three tasks, the performance on the lowest set size is near
ceiling.

As a validity check, we obtained the Pearson correlations of
each complex span task. Partial span scores for all tasks were
significantly correlated, demonstrating convergent validity. Spe-
cifically, the operation span correlated r � .54 with the symmetry
span and r � .53 with the rotation span, and the symmetry span
correlated r � .68 with the rotation span.

Finally, the last check we did was for unidimensionality.
Given that there could be multiple response processes, practice
or learning effects, or other factors going into performance of
the complex span tasks, it is possible that more than one factor
could be accounting for the observed scores. For example,
subjects might be responding differently to items in the first
block of trials as opposed to the third due to developing
strategies, the building of proactive interference, or that they
are not sufficiently practiced on the task during the first block.
For each task, we entered all individual set sizes (e.g., set size
3 block 1 operation span) within a task into an exploratory
factor analysis and using a Varimax rotation. For each task, one
dominant factor accounted for the bulk of the variance with no
evidence1 of additional factors contributing to performance
variance. The tasks therefore do not appear to be multidimen-

sional, as subjects are responding similarly across blocks and
set sizes.

IRT.
Operation span. Because of fit issues with the constrained

model of the operation span,2 we lifted the constraints that
items of the same set size across blocks had equal parameters.
As such, item discrimination and item difficulty parameters
could vary across blocks for trials of the same set size. We only
report results from the unconstrained model of the operation
span.

Fit. The �2loglikelihood was 21,817. At the item level, Set
size 3 of block 1 and set size 6 of block 2 failed to fit (p 	 .01).
We tested if the unconstrained model had an overall better fit by
comparing the change in �2loglikelihood (21,977 – 21,817) and
the change in df (90–30). The resulting test of 
2(160, 60), p 	
.001, was significant, indicating that indeed the unconstrained
model does fit better than the constrained.

Difficulty. The overall difficulty of the operation span was
low, at around � � �1.1 (see Figure 2) with no items having
positive � value (see Table 3). The largest set size (7) had a
difficulty of � � �.45. Items became slightly easier in later
blocks, with an average difference of � � .24 between set sizes in
block 1 and the corresponding set size in block 3. Following this
trend, the easiest item was set size 3 of block 3 (� � �2.0) and the
hardest was set size 7 of block 1 (� � �0.34).

Symmetry span.
Fit. The �2loglikehood was 16,793. At the item level, Set

size 4 of block 2 did not have acceptable item fit (p 	 .01).
Because only one item failed to fit, additional modeling was not
undertaken.

Difficulty. The overall difficulty of the symmetry span was
higher than that of the operation span, but still low at � � �0.5 (see
Figure 3). At the item level, set size 2 had a difficulty of � � �2.13,
set size 3 had a difficulty of �1.23, set size 4 had a difficulty of �.58,
and set size 5 had a difficulty of .05 (see Table 3).

Rotation span.
Fit. The �2loglikehood was 5,304. At the item level, all items

were at levels of acceptable fit (p � .01) and thus additional
modeling was not undertaken.

1 Scree plots highly suggested one factor for each task, and eigenvalues
for the second largest factor in each task was never larger than 1.1.

2 In the constrained model, three of the 15 items did not fit at the
acceptable level of p � .01, and an additional three were borderline at p 	
.02.

Table 1
Descriptive Statistics of Partial Span Scores by Demographic in Study 1

Task

GT (n � 214) IUPUI (n � 84) Community (n � 246)

M SD Skew Kurt M SD Skew Kurt M SD Skew Kurt

OSpan 61 11 �1.2 1.8 54 15 �1.0 .74 47 17 �.36 �.67
SymSpan 31 8 �.59 �.27 26 8 �.42 �.09 23 8 �.22 �.72
RotSpan 29 9 �1.3 1.8 26 9 �.67 �.27 20 9 �.19 �.38

Note. Ospan � operation span; RotSpan � rotation span; SymSpan � symmetry span; GT � Georgia Tech; IUPUI � Indiana University-Purdue
University; Community � Subjects from the Atlanta community; Skew � skewness; Kurt � kurtosis.

Table 2
Mean Performance for Each Task Based on Set Size in Study 1

Set size

OSpan SymSpan RotSpan

M SD M SD M SD

2 — — 1.8 .37 1.7 .49
3 2.6 .55 2.3 .75 2.1 .80
4 3.3 .94 2.5 1.1 2.3 1.2
5 3.9 1.3 2.4 1.4 2.0 1.3
6 4.1 1.6 — — — —
7 4.1 1.8 — — — —

Note. OSpan � operation span; SymSpan � symmetry span; RotSpan �
rotation span.
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Difficulty. The overall difficulty of the rotation span was
between the operation and symmetry span at around � � �0.9 (see
Figure 4). Despite this, the individual items were all more difficult
than the corresponding set size for the symmetry span. Set size 2
had a difficulty of � � �1.29, set size 3 had a difficulty of �0.91,
set size 4 had a difficulty of �0.36, and set size 5 had a difficulty
of .41 (see Table 3).

Discussion

In terms of fit, the items in the operation span task do not fit
well, with the smaller set sizes in the first block being most
problematic. In general, item misfit suggests that the pattern of
responses for that particular item are different than the other
items, and that the model is not accounting for this difference.
Thus the smaller set sizes of the first block in the operation span
are qualitatively different than the rest in terms of how subjects
are responding, although it should be noted that other set sizes
in the operation span were either below or barely achieved the
level of acceptable fit (p � .01). When we lifted the constraints
across blocks in the operation span and tested a nested model,
the unconstrained model fit significantly better than the con-
strained overall, but two items still failed to fit. Set size 6 of
block 2 did not fit in the constrained model, but it also was

approaching the p � .01 criterion for misfit in the unconstrained
model as well, indicating this item was especially problematic
in terms of parameter estimation. Furthermore, whereas the
smallest three set sizes of the first block of the operation span
failed to fit in the constrained model, only one of these three
failed to fit in the unconstrained model. Symmetry and rotation
span items fit much better, with only one total misfitting item
among the two tasks. We will return to the issue of model fit in
the operation span later.

The overall difficulty of the complex span tasks is low in this
study, with �s between �1.1 and �0.5. This indicates that subject-
level information and discrimination is maximized for below av-
erage subjects with these tasks. For subjects of ability levels higher
than � � .5 in the operation span and � � 1 in the symmetry and
rotation span, standard error is actually larger than information. In
other words, these complex span tasks as they are typically ad-
ministered are very poor at discriminating subjects whose ability
levels are around .5 SDs above the mean and higher. This is a
surprising and worrying finding given that the complex span tasks
are often administered to higher ability subjects (e.g., college
undergraduates). Releasing the constraints of equal parameters for
the same set size across blocks on the operation span had no
meaningful impact on the overall test or item difficulty, but it is
interesting that items in the later blocks have lower difficulty
estimates than items the first block. If it were the case that the
buildup of proactive interference was having a strong impact on
later items, items would become increasingly more difficult as
proactive interference continued to increase. As such, later items
being easier suggests that practice and learning effects are having
a larger influence on performance than the buildup of proactive
interference.

Study 2

Study 2, like Study 1, was a large-scale correlational study
designed to answer a multitude of research questions. Study 2
consisted of 45 cognitive tasks administered over four 2-hr long
sessions at Georgia Tech. We modified each complex span task
based on the results from Study 1 by adding two larger set sizes,
and also followed the Foster et al. (2015) procedure by elimi-
nating the third block for each task. Our primary questions for
this study are whether adding the larger set sizes helps the task
discriminate higher ability subjects, and if so to what extent.

Table 3
Item Parameters for Models in Study 1

Set size

OSpan SymSpan RotSpan

� SE � SE � SE � SE � SE � SE

2 — — — — .92 .08 �2.13 .13 1.62 .20 �1.29 .12
3 .75 .06 �1.94 .11 .79 .05 �1.23 .08 .90 .10 �.91 .11
4 .64 .04 �1.40 .08 .68 .04 �.58 .06 .84 .09 �.36 .09
5 .56 .04 �1.18 .07 .55 .04 .05 .05 .69 .07 .41 .12
6 .46 .03 �.84 .06 — — — — — — — —
7 .44 .03 �.45 .05 — — — — — — — —

Note. Ospan � operation span; RotSpan � rotation span; SymSpan � symmetry span. � � item discrimination; � � item difficulty. Results for OSpan
are from the unconstrained model.

Figure 2. Total information curve for the unconstrained operation span in
Study 1. Three blocks of set sizes 3–7 were administered. Item parameters
were specified from a normal distribution N(0,1) and were allowed to vary
in set sizes of the same length across different blocks.
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Method

Participants. Subjects were run at Georgia Tech. Proper eth-
ical guidelines were followed and the study received approval
from Georgia Tech’s Institutional Review Board. Our screening
process required all subjects to be native English speakers aged
18–35 with normal or corrected-to-normal vision. A total of 351
subjects completed all four sessions. Subjects were recruited from
Georgia Tech, Georgia State University, and the greater Atlanta
community. Subjects were compensated at a rate of $10/hour plus
a $10 completion bonus after the final session. Georgia Tech
students could choose to receive participation credit instead of
financial compensation (1 credit � $10). Approximately half of
the subjects were recruited from Georgia Tech or Georgia State,
with the other half coming from the greater Atlanta community.
Overall, 339 subjects had usable data for the operation span, 349
for the symmetry span, and 343 for the rotation span.

Tasks.
Complex span (WMC). The complex span tasks were the

same as in Study 1, with two notable exceptions. First, we added
two larger set sizes to each task (8 and 9 for operation span, 6 and
7 for symmetry and rotation spans). Second, two blocks of each set
size were administered instead of three.

Fluid Intelligence.
Raven’s Advanced Progressive Matrices. In the Raven’s Ad-

vanced Progressive Matrices (Raven; Raven, 1962; odd problems),
each trial contained eight abstract figures that were embedded in a
3 � 3 matrix. The ninth space was blank. Subjects chose which of
several options completed the sequence. Ten minutes were allotted
to solve 18 problems. The dependent variable is the number of
correct responses.

Letter sets. In the letter sets (Ekstrom, French, Harman, &
Dermen, 1976), five strings of four letters were presented in each
trial. Four of the strings followed a specific rule whereas one string
did not. The subject needed to discover this rule and decide which
string did not follow it. Seven minutes were given to complete 30
problems. The dependent variable is the number of correct re-
sponses.

Number series. In the number series task (Thurstone, 1938), a
series of numbers was presented on a computer screen. A rule
joined these numbers. The subject needed to discover this rule and
decide which number was next in the sequence. Five minutes were
given to complete 15 problems. The dependent variable is the
number of correct responses.

Analysis. All IRT analyses were conducted in a similar man-
ner as in Study 2.

IRT results.
Operation span.
Fit. As with the operation span in Study 1, to address item

misfit we ran an unconstrained model in which the item parameters
of the same set size were free to vary across blocks. For overall
model fit, the �2loglikelihood was 14,070. At the item level, all
but one item (set size 8 of block 2) failed to fit at the p � .01
criterion, however set size 3 of block 1 and set size 4 of block 2
were very close (p 	 .02) to this threshold.

We tested if the unconstrained model of the operation span had
an overall significant fit by comparing the change in �2loglikeli-
hood (14,160–14,070 and the change in df (96–48). The resulting
test of 
2(90, 48), p 	 .001, was significant, indicating that the
unconstrained model did indeed fit better than the constrained.

Difficulty. Overall, the operation span had a difficulty of
around � � �.5 (see Figure 5). With respect to item difficulty, the
trend was similar to Study 1 in that corresponding set sizes were
easier in block 2 than block 1, but to a lesser extent. Importantly,
the two largest set size (8 and 9) had an item difficulty of � � 0
(see Table 4).

Symmetry span.
Fit. The �2loglikelihood was 11,396. All 12 items met the

criterion for acceptable model fit. Additional modeling was not
conducted due to this.

Difficulty. Overall difficulty for the increased set size symme-
try span was above 0, at � � .5 (see Figure 6). What is most

Figure 3. Total information curve for the symmetry span in Study 1.
Three blocks of set sizes 2–5 were administered. Item parameters were
specified from a normal distribution N(0,1) and constrained to be equal in
set sizes of the same length across the three blocks.

Figure 4. Total information curve for the rotation span in Study 1. Three
blocks of set sizes 2–5 were administered. Item parameters were specified
from a normal distribution N(0,1) and constrained to be equal in set sizes
of the same length across the three blocks.
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noteworthy is that the two largest set sizes both had a difficulty
over � � 1 (see Table 4).

Rotation span.
Fit. The �2loglikelihood was 10,717. All 12 items met the

criterion for acceptable fit except set size 7 of block 1. Because
only one item demonstrated misfit, additional modeling was not
undertaken.

Difficulty. Overall item difficulty of the rotation span was
high, with a � � .7 (see Figure 7). As with the increased set size
symmetry span, the largest two set sizes of the rotation span have
an item difficulty of � � 1 (see Table 4).

Classical test theory.
Descriptives. We obtained descriptive statistics for each set

size, similar to Study 1 (see Table 5). Of importance is that
operation span performance still plateaus at around a set size of 5,
although variance plateaus at around 7. For both the rotation and
symmetry span tasks, performance plateaus at set size 5, but
surprisingly drops after 5. Variance in these two tasks plateau at
around a set size of 4 or 5.

Reliability. Partial span scores for the standard administration
of the complex span tasks have demonstrably high reliability (see
Redick et al., 2012). We estimated reliability among the Study 2

tasks to ensure that adding larger set sizes and removing the third
block of trials did not affect this. Given that there are not parallel
forms of the complex span tasks, and that they were only admin-
istered once to each subject, internal consistency is the only
approximation of reliability that could be obtained. We measured
internal consistency by splitting each complex span task into two
halves based on block (i.e., blocks 1 and 2), correlating the two
halves, and stepping-up the correlations according to the
Spearman-Brown prophecy formula. Using this calculation, the
partial span scores of each complex span task were highly reliable.
The partial span scores for all tasks had an internal consistency at
or above .80. Specifically, .86 for the operation span, .80 for the
symmetry span, and .83 for the rotation span. Note that the values
are very close to the estimates for the operation and symmetry span
tasks reported in Engle, Tuholski, Laughlin, and Conway (1999)
and Kane et al. (2004).

Correlational analyses. As in Study 1, we first wanted to
demonstrate convergent validity by obtaining the Pearson correla-
tions among the complex span tasks. All tasks strongly and sig-
nificantly correlated with one another. Specifically, the operation
span correlated r � .57 with the symmetry span and r � .55 with

Figure 5. Total information curve for unconstrained operation span in
Study 2. Two blocks of set sizes 3–9 were administered. Item parameters
were specified from a normal distribution N(0,1) and were allowed to vary
in set sizes of the same length across the two blocks.

Table 4
Item Parameters for Models in Study 2

Set size

OSpan SymSpan RotSpan

� SE � SE � SE � SE � SE � SE

2 — — — — .77 .10 �1.88 .20 .87 .10 �1.59 .15
3 .60 .07 �1.70 .16 .79 .08 �.83 .10 .69 .07 �.84 .10
4 .53 .06 �1.28 .12 .55 .06 �.19 .09 .71 .07 �.06 .08
5 .44 .05 �.99 .11 .54 .05 .31 .08 .73 .07 .64 .08
6 .48 .05 �.68 .09 .42 .04 1.02 .12 .52 .05 1.35 .13
7 .53 .05 �.18 .07 .48 .05 1.28 .13 .51 .05 1.60 .16
8 .40 .05 .14 .08 — — — — — — — —
9 .48 .05 .10 .08 — — — — — — — —

Note. Ospan � operation span; RotSpan � rotation span; SymSpan � symmetry span. � � item discrimination; � � item difficulty. Results for OSpan
are from the unconstrained model.

Figure 6. Total information curve for symmetry span in Study 2. Two
blocks of set sizes 2–7 were administered. Item parameters were specified
from a normal distribution N(0,1) and constrained to be equal in set sizes
of the same length across the two blocks.
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the rotation span, and the symmetry span correlated r � .70 with
the rotation span. We also did the same check for unidimension-
ality as in Study 1 and found no evidence that any of the tasks were
multidimensional.

Subsequent correlational analyses are directed toward the rela-
tionship between individual trials and tasks with Gf. The relation-
ship between WMC and Gf is a hallmark of WM research, and thus
the extent to which a WM task performance relates to Gf is an
indicator of predictive validity. Table 6 shows the correlation to Gf
(defined as composite Z-Score of the three Gf tasks) for each
individual trial of the complex span tasks. The correlations to Gf
are stronger for the larger set sizes, and are strongest for set size 8
in the operation span and 5 in the symmetry and rotation span.

With the recent work geared toward shortening the complex
spans to make them more efficient, it seems prudent to attempt a
direct comparison of these different methodologies. We accom-
plished this by deriving a total partial span score for each task in
which certain set sizes are eliminated from the scoring. We fol-
lowed the scoring procedure used in Foster et al. (2015) and
Oswald et al. (2015), comparing these to the full-length task (i.e.,
when all trials and set sizes are scored). In addition, we removed
the two smallest set sizes in each task and derived a partial span

score. Table 7 shows the correlations of each of the different
scoring procedures to Gf. From this table we can see that removing
the two smallest set sizes for each task does not at all impact the
correlation between WMC performance and Gf. When the Foster
et al. scoring procedure is used (two blocks, set sizes 3–7 for
operation span and 2–5 for symmetry and rotation span) correla-
tions to Gf are slightly lower but the only statistically different
correlations between the Foster et al. tasks and the full-length tasks
are with the operation span (p 	 .05). As for the Oswald et al. tasks
(two blocks, set sizes 4–6 for operation span and 3–5 for symme-
try and rotation span), the correlations to Gf are statistically lower
than all of the full-length tasks with the exception of the symmetry
span. When comparing the Foster et al. and Oswald et al. score
correlations to Gf, the two different scoring procedures were not
statistically different. At the composite level, all correlations were
statistically different from one another, largely due to the high
intercorrelation between the composite WMC scores (above .93 in
all cases).3

Next, we divided the dataset into three groups based on com-
posite WMC Z-Scores and ran the same correlations as in Table 7,
but only for the highest scoring group (high spans, defined here as
the top third of performers). Looking at only the high end inevi-
tably lead to smaller overall correlations due to restriction of range,
but the question of interest here is how the larger set sizes (e.g., 6
and 7 in the symmetry span) impact predictive validity at the
highest end of the ability spectrum. These results are shown in
Table 8 and overall are congruent with expectations from the IRT
analyses.

Discussion

IRT analyses. When the larger set sizes were added to the
complex span tasks, they performed much better in terms of
providing information for average and high-ability subjects. This
was particularly true for the spatial tasks, as both the symmetry and
rotation spans had an item difficulty above � � .5, meaning they
provided the most information for subjects who are about .5 SDs
above the mean. For the operation span, adding the two larger set

3 We used the Williams test of dependent correlations recommended by
Steiger (1980) to test the statistical difference between the correlations, and
used an uncorrected alpha of .05 for each test.

Table 5
Mean Performance for Each Task Based on Set Size in Study 2

Set size

OSpan SymSpan RotSpan

M SD M SD M SD

2 — — 1.7 .49 1.7 .53
3 2.5 .73 2.0 .91 2.9 .94
4 3.1 1.1 2.1 1.3 2.0 1.2
5 3.6 1.5 2.1 1.4 2.7 1.4
6 3.9 1.8 1.8 1.4 1.5 1.3
7 3.8 2.2 1.7 1.5 1.5 1.3
8 3.7 2.2 — — — —
9 3.8 2.3 — — — —

Note. OSpan � operation span; SymSpan � symmetry span; RotSpan �
rotation span.

Table 6
Item Analysis: Correlations to Fluid Intelligence for Each Set
Size in Study 2

Set size

OSpan SymSpan RotSpan

r p r p r p

2 — — .42 	.001 .46 	.001
3 .50 	.001 .66 	.001 .61 	.001
4 .55 	.001 .67 	.001 .68 	.001
5 .61 	.001 .68 	.001 .70 	.001
6 .66 	.001 .67 	.001 .67 	.001
7 .70 	.001 .64 	.001 .67 	.001
8 .77 	.001 — — — —
9 .67 	.001 — — — —

Note. OSpan � operation span; SymSpan � symmetry span; RotSpan �
rotation span

Figure 7. Total information curve for rotation span in Study 2. Two
blocks of set sizes 2–7 were administered. Item parameters were specified
from a normal distribution N(0,1) and constrained to be equal in set sizes
of the same length across the two blocks.
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sizes brought the overall difficult up by almost two thirds of one
SD, although the overall difficulty was still low and the difficulty
of sets 8 and 9 were barely above average ability level. A further
concern with the operation span is that five out of fourteen items
did not meet levels of acceptable item fit before releasing the
cross-set constraints, with four of them being in the first block.

Correlational analyses. The correlational results from the
individual set sizes are consistent with what expectations given the
IRT data, as our sample was diverse and the highest correlations to
Gf are found with the set sizes that discriminate best at the average
ability level. That is, it is ideal in individual differences research to
match the ability level of a sample with the difficulty of a test of
item as this maximizes variance and results in the highest reliabil-
ity and validity possible for that test or item. These high correla-
tions to Gf for the set sizes that discriminate at the average ability
level are a product of this maximization of reliability and validity.

Looking at the different scoring procedures, a key result is that
removing the two smallest set sizes (i.e., Method 2) did not result
in lower correlations to Gf. This suggests that the smallest set sizes
can be removed from the tasks to reduce administration time
without affecting predictive validity. Furthermore, the Oswald et
al. (2015) method of removing the largest and smallest set sizes
from the typical administration of the operation span and smallest
set size for the symmetry and rotation span performed the worst in
terms of predictive validity, but not statistically different from the
Foster et al. method.4 Another interesting and perhaps surprising
result is that there was no difference in the correlations to Gf
across the scoring procedures with the larger set sizes and Foster
et al. (2015) for the two spatial tasks. That is, although the IRT
results show that adding set sizes 8 and 9 to the symmetry and
rotation span tasks increased their difficulty such that they dis-
criminated high ability subjects better, the predictive validity was
not affected. However adding the larger set sizes to the operation
span (8 and 9) did impact predictive validity, as evidenced by the
increased correlation to Gf over the Foster et al. method. Thus,
despite it being the case that even the highest set sizes of the
operation span (8 and 9) do not discriminate much above average
ability level, the operation span benefitted the most from the
additional set sizes in terms of predictive validity of the partial
span scores.

The results shown in Table 8 illustrate quite clearly the benefit
of adding larger set sizes to the complex span tasks, and provide
converging evidence with the IRT results that the typical admin-
istration of the complex spans (e.g., set sizes 3–7 for the operation
span and 2–5 for the operation span, as in Study 1) are not

adequate for discriminating high ability subjects. When looking at
only high span subjects (operationalized here as the top third of
performers), the scoring procedures without the largest set sizes fail
to significantly predict Gf in both the operation and symmetry span
tasks. Furthermore, although the WMC composite scores from these
two methods do significantly correlate to Gf, the magnitude of this
correlation is much smaller than the methods with the largest set sizes
included, as they predict less than 10% of the variance in performance
whereas the scoring procedures with the larger set sizes included
predict 22% and 25% of the variance. This provides strong evidence
that adding the larger set sizes increases the utility of the complex
span tasks when discriminating higher ability subjects, particularly in
regards to the operation and symmetry span. Interestingly although
the difference between the correlation of rotation span performance
and Gf was significantly different between the Foster and Oswald
tasks and the full-length and tasks, the magnitude of this difference
was small in comparison to the other two tasks and the WMC
composite.

Overall, these results suggest that the smallest set sizes can be
removed, at least from scoring, in the complex span tasks for
normal populations. Furthermore, even the largest set sizes in the
symmetry and rotation span tasks (6 and 7) are not necessary in
studies involving a diverse sample, and the case can be made that
these two tasks should have more set sizes around the 4–5 range
to maximize validity and discrimination. For example, it might be
better to administer multiple sets of trials of sizes 4 and 5 and
fewer sets of trials of set size 2, 3, 6, and 7 for the spatial tasks. In
the operation span, however, the very largest set sizes (7–9) are the
best overall, and thus a better administration of this task would be
multiple sets of 6, 7, 8, and 9. As a final point about these data,
the operation span scores had the weakest relationship to Gf of all
the tasks in this dataset, which is on the whole not surprising given
our previous experience with this task.

General Discussion

Studies 1 and 2 have illuminated quite a bit about the complex
span tasks. The most salient of which is that the operation span, the
most commonly used complex span task, is not appropriate for
discriminating high or even average ability subjects. The standard

4 Oswald et al. (2015) did not actually include the rotation span in their
analyses. However, it is safe to assume that they would have removed the
smallest set size in this task just as they did with the other tasks in their
study.

Table 7
Item Analysis: Comparison of Different Scoring Methods from Study 2

Method

OSpan SymSpan RotSpan WMC

r p r p r p r p

1 .55 	.001 .57 	.001 .61 	.001 .67 	.001
2 .56 	.001 .57 	.001 .61 	.001 .69 	.001
3 .50 	.001 .55 	.001 .60 	.001 .65 	.001
4 .49 	.001 .54 	.001 .57 	.001 .64 	.001

Note. Correlations to Gf. OSpan � operation span; SymSpan � symmetry span; RotSpan � rotation span;
WMC � composite Z-score; Method 1 � all set sizes; Method 2 � smallest 2 set sizes removed; Method 3 �
Foster et al. (2015) scoring method; Method 4 � Oswald et al. (2015) scoring method.
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administration of the operation span includes set sizes 3–7, and in
both studies set size 7 had an item difficulty below average ability
level. In addition, operation span performance (when only scoring
set sizes 3–7) did not significantly relate to Gf in the top third of
performers in Study 1. However, adding set sizes 8 and 9 helped
quite a bit in this regard. Thus while the operation span with set
sizes 3–7 is not appropriate for discriminating subjects of average
or above average ability, an operation span with set sizes 4–9, for
instance, would likely be a good verbal WMC task.

The item misfit in the first block of trials of the unconstrained
operation span is also a cause for concern, as it suggests subjects
are responding somewhat differently in the first block compared to
the second block. There are a few potential reasons for this. In
terms of methodology, the operation span task is often the first task
we administer in our studies, which was the case for both studies
presented here. With individual differences work, counterbalanc-
ing is not advised as it creates a difference between subject A and
subject B (i.e., task order) that potentially adds construct irrelevant
variance, making it more difficult to find the effects of interest.
Given that the operation span is the first task subjects complete, it
could be the case that in the first block of trials they are merely
getting used to being in the testing environment and familiarizing
themselves with how to use our computer adaptive tasks. Some
subjects will have more experience in this regard due to either
participating in a previous study, or simply being more familiar
with using a computer. In addition, it could be the case that
subjects are well-learned on the general design of complex span
tasks after completing the first block of the operation span, and
thus we do not see item misfit in the rotation and symmetry span
to the same extent because of this familiarity. If task order is the
explanation, then the problem of item misfit does not lie with the
operation span itself but rather our methodology.5 Another possi-
bility is related to proactive interference build up. If it takes a few
trials for proactive interference to build (through letters being
repeatedly displayed), then the latter trials are qualitatively differ-
ent from the earlier ones. However, proactive interference buildup
is not the most likely explanation. Items in the latter blocks were
less difficult than in block 1, albeit only slightly, but if proactive
interference impacted performance it would be detrimental and not
beneficial. Furthermore, it has been shown that proactive interfer-
ence builds up very quickly, and thus is likely in full effect from
the beginning of the real trials or, at the latest, after the first set size
or two has been administered (Bunting, 2006; Keppel & Under-

wood, 1962). The unconstrained models thus suggest that strategy
implementation and/or practice effects have a slightly stronger
impact on performance in repeated blocks of the operation span
than does proactive interference buildup.

An important question is why exactly the operation span does not
perform as well as the symmetry and rotation span tasks in terms of
discriminating at the higher end of the ability spectrum. As Study 2
shows, adding larger set sizes helped to a large extent, but the two
spatial tasks still outperformed the operation span in this regard. Item
misfit could be an issue, but it is also the case that the operation
span has the simplest stimuli, thus allowing subjects to engage in
more strategic rehearsal of the stimuli. The processing task in the
operation span might contribute to this as well, as simple arithme-
tic is likely automatic for higher ability subjects, and thus is not a
useful distractor to prevent rehearsal. It also should be reiterated
that the operation span is verbal in nature whereas the rotation and
symmetry spans are spatial, which is a key distinction between the
tasks. As it stands, it is not yet clear whether one of these factors
is the main reason for the operation span not being as good of a
task or if multiple factors contribute.

In regards to the rotation span, this task is excellent in terms of
predictive validity and discriminating high ability subjects, even
when set sizes 6 and 7 are not present. The item difficulties of set
sizes 3, 4, and 5 in the rotation span result in it being a good task
to employ to a wide array of populations. The correlational anal-
yses support this conclusion, as when we scored the rotation span
following the Oswald et al. (2015) and Foster et al. (2015) proce-
dures, it had the highest correlation among the complex span tasks
to Gf and still significantly predicted Gf in high spans (defined).
As a result, the typical administration of the rotation span does
seem to be appropriate even for high ability samples. One caveat
being that that the overall information curve for the standard
administration of the rotation span is more left-shifted than the
symmetry span (i.e., less information for higher ability subjects).

5 Note that there is good reason in administering the operation span task
first. In general, our lab is most interested in WMC performance and given
this plus the length of the complex span tasks, it is our approach to
administer the complex span tasks at the beginning of sessions. The
operation span is the easiest complex span task to grasp in terms of the
instructions and nature of the stimuli, and as such it is usually the first
complex span task we show the subjects so that they can better understand
the symmetry and rotation span tasks later in the study.

Table 8
Item Analysis: Comparison of Different Scoring Methods from Study 2 in High Spans

Method

OSpan SymSpan RotSpan WMC

r p r p r p r p

1 .25� .020 .29� .008 .35� 	.001 .46� .013
2 .27� .013 .31� .004 .38� 	.001 .50� 	.001
3 .09 .403 .20 .064 .29� .007 .31� .004
4 .07 .491 .19 .295 .29� .010 .27� .020

Note. Correlations to Gf among high spans only (tertile split). OSpan � operation span; SymSpan � symmetry
span; RotSpan � rotation span; WMC � composite Z-score; Method 1 � all set sizes; Method 2 � smallest 2
set sizes removed; Method 3 � Foster et al. (2015) scoring method; Method 4 � Oswald et al. (2015) scoring
method.
� p 	 .05.
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Yet at the item level, the rotation span with set sizes 2–5 is more
difficult than the symmetry span for corresponding set sizes.
Adding the larger set sizes of 6 and 7 to the rotation span does still
improve overall prediction and should be done if the target pop-
ulation is that of particularly high ability.

Finally, the symmetry span task is quite similar to the rotation
span in regards to difficulty and predictive validity. The standard
administration of this task is appropriate for average ability sub-
jects, and decent for high ability subjects, as the symmetry span
did not significantly predict Gf performance in high spans but
overall had a higher correlation to Gf than the operation span.
However, we advise using the larger set sizes of 6 and 7 for higher
ability samples, as with the rotation span.

Limitations

Some limitations and caveats of our results warrant further
discussion, namely in regards to the tasks, our sample, and unidi-
mensionality assumption of our modeling approach.

First, neither of our studies included the reading span task. The
reading span is another popular verbal complex span tasks that
likely parallels the operation span in terms of discrimination,
reliability, predictive validity, and so forth. This particular task has
fallen out of favor with our lab due to its reliance upon vocabulary
and other non-WM related skills that introduce construct-irrelevant
variance.

Second, the nature of our sample differs from what is normally seen
within the field of psychology. Whereas most cognitive studies rely
on undergraduate psychology students, both samples here contained a
large amount of Georgia Tech students (higher than average spatial
and mathematical abilities, along with high SAT scores) combined
with lower socioeconomic status community subjects. As such, the
population we sample from is more diverse but includes two ex-
tremes. While we can speculate that the mean of these two groups will
average out to be similar to the more typical public university used in
most studies, this is not guaranteed. In addition, even if the means are
similar, the combined distribution of Georgia Tech students and
Atlanta community members will assuredly be much different (e.g.,
leptokurtic) than a distribution of more homogenous psychology
undergraduates. Even though IRT estimates are said to be invariant to
the sample, this is only true in theory rather than in practice, and as
such the results of our studies could be in part a function of our
population. To this end, we did run an additional analysis on the
operation span from Study 1 in which only noncollege students were
included to see how the operation span performs at the lower end of
the distribution.6 The IRT analysis of the operation span on these 165
individuals shows that it is still discriminating at a lower-than-average
ability level (see Figure 8, note that the model sets the average ability
level at � � 0). This provides strong evidence that the results and
conclusions outlined throughout this paper and not a function of our
population. In addition, it suggests that the standard operation span is
not even good at discriminating higher ability subjects within the
lowest performing group.

Third, one reviewer noted that our findings and interpretations need
to be qualified with respect to model fit. In instances of poor fit,
results cannot be trusted to the fullest extent. We readily admit that the
operation span had relatively poor fit, although releasing parameter
constraints did improve overall and item fit. The spatial complex span

tasks had a good overall fit, though there were some instances in
which individual items did not achieve acceptable levels.

Finally, the dimensionality of the tests should be addressed
given that the IRT models we ran assumed unidimensionality. We
ran an exploratory factor analysis on all complex span tasks in both
studies, broken down by each individual set size (e.g., set size 3 for
block 1 in the operation span was treated as a separate item from
set size for block 2) and there was no evidence of multidimen-
sionality. For all tasks, there was a large first factor with an
eigenvalue above 4, and the next largest factor had an eigenvalue
below 1.1. Examination of scree plots also indicated that only one
factor was necessary. One caveat to this is that there are other ways
to access multidimensionality. One such method is running mul-
tidimensional IRT models, which we attempted to do but the
models would not converge. The evidence therefore suggests that
performance in all complex tasks reported here is not multidimen-
sional.

Conclusions

This goals of this article were to further expand on our knowl-
edge of the complex span tasks as well as to help guide researchers
in terms of which of these tasks are best used in their study. In this
regard, there is no one-task-fits-all explanation, but rather the
appropriate task(s) depends on multiple factors, such as time
constraints, type of sample, desire to have verbal or spatial tasks,
the particular research question, and which statistical analyses are
to be used. It cannot be overstated that measuring WMC as a
construct should be done using multiple tasks. In this case, it is not
as necessary to include larger set sizes and indeed the shortened

6 Subjects complete a demographic form prior to engaging in any com-
puter tasks. One of the questions asks if they are attending or have ever
attended college. For this analysis, only the 165 who indicated “no college”
were included. Thus community subjects who had attended college (n �
81) were omitted.

Figure 8. Total information curve for unconstrained operation span in
Study 1, noncollege students only. Three blocks of set sizes 3–7 were
administered. Item parameters were specified from a normal distribution
N(0,1) and were allowed to vary in set sizes of the same length across
different blocks. This analysis only includes subjects who indicated never
attending college (n � 165).
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tasks will work just fine.7 However, when using just a single
complex span task it is imperative to select the appropriate one for
the study and take into consideration the number of trials being
administered.

Correlational results demonstrate that the typical administration
of the operation span is not adequate for high, and even average,
ability subjects. IRT results showed item misfit with the first block
of trials in the operation span, suggesting another concern and
uncertainty about this task. As such, we strongly encourage re-
searchers to avoid using the standard administration of operation
span task on samples of higher ability, such as ones consisting
entirely of university undergraduates. If researchers are interested
in measuring WMC more broadly (at the latent or composite
level), the operation span does however serve as a useful verbal
WMC task. But as an individual measure of WMC, the operation
span seems most useful for lower ability samples, and we recom-
mend adding larger set sizes to the task to improve validity in
almost all cases.

In contrast, the symmetry and rotation span tasks are superior to
the operation span in many ways. First, there are fewer issues of
item misfit, suggesting that response patterns remain fairly con-
sistent across blocks. Second, task performance correlates more
strongly to Gf, demonstrating better predictive validity. Third, the
stimuli are more complex and thus are not as susceptible to
strategies and factors that could lead to construct irrelevant vari-
ance. Fourth, these tasks are much better at measuring higher
ability subjects. And, fifth, these tasks take less time than the
operation span to administer due to shorter practice instructions
and less overall trials. To this point, adding larger set sizes to the
spatial tasks results in approximately the same administration time
as the standard-length operation span, but gives the researcher
much more in terms of predictive validity. The rotation and sym-
metry span tasks with set sizes 2–5 is a good task to administer for
most studies, but in some cases it is advised to include the larger
set sizes as well.

In terms of removing trials, our results provide substantive
evidence that, at a minimum, the smallest set size for each task can
be removed. These trials discriminate at such a low ability that
they are not useful for just about any subject who could realisti-
cally participate in a psychology experiment, and furthermore
performance on these trials correlates minimally with Gf. It also
appears safe to remove the second smallest set size for each task as
well (e.g., 4 for operation span, 3 for symmetry and rotation span),
as these trials are not predictive at the average and high ability
range. However, one potential concern is that removing trials does
indirectly affect performance on other trials, and our analyses from
Study 2 cannot speak to this issue. Thus more research is required
to closely explore the impact removing smaller set sizes has on the
task as a whole. For instance, it may be the case that practice has
to be lengthened if some set sizes are to be removed.

There is a trend in psychology for shorter, more efficient, tasks.
This trend ultimately leads toward the employment of adaptive
tasks that can accomplish more in 5–10 min than a nonadaptive
task can accomplish in twice that. IRT analyses are essential in
creating and understanding adaptive tasks, and it is our hope that
IRT will become a more popular diagnostic tool for understanding
tasks of different cognitive constructs. Ultimately, we also hope to
use data-driven techniques to create adaptive complex span tasks
such that we can get stable and valid estimates of WMC from a

fraction of the time it currently takes. The analyses presented here
are an important first step for this to become a reality.8

7 Although these data are not presented here, we conducted confirmatory
factor analyses from the data in Study 2 looking at the latent correlation of
WMC and Gf while using all of the different scoring procedures for WMC
(e.g., Foster, Oswald, full-length). The difference in the magnitude of this
correlation was minimal across the different scoring procedures, suggesting
that the shortened tasks are adequate for measuring WMC at the latent level.

8 As per APA guidelines, we are receptive to sharing any and all data
from this paper in aggregate and de-identified form. The main data sets for
both studies containing the complex span task set size scores and compos-
ite Gf scores can be found in the supplemental material as well as on our
website (http://englelab.gatech.edu/data.html). You can also email Chris-
topher Draheim at cdraheim3@gatech.edu for questions regarding the data.
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