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Abstract and Keywords

This chapter reviews evidence concerning the contribution of cognitive ability to 
individual differences in expertise. The review covers research in traditional domains for 
expertise research such as music, sports, and chess, as well as research from industrial–
organizational psychology on job performance. The specific question that we seek to 
address is whether domain-general measures of cognitive ability (e.g., IQ, working 
memory capacity, executive functioning, processing speed) predict individual differences 
in domain-relevant performance, especially beyond beginning levels of skill. Evidence 
from the expertise literature relevant to this question is difficult to interpret, due to small 
sample sizes, restriction of range, and other methodological limitations. By contrast, 
there is a wealth of consistent evidence that cognitive ability is a practically important 
and statistically significant predictor of job performance, even after extensive job 
experience. The chapter discusses ways that cognitive ability measures might be used in 
efforts to accelerate the acquisition of expertise.

Keywords: expertise, skill acquisition, job performance, cognitive ability, intelligence

Domain-General Models of Expertise: The Role 
of Cognitive Ability
Why do some people reach higher levels of expertise in complex real-world tasks than 
other people? There is no doubt that domain-specific knowledge and skills contribute 
substantially to individual differences in expertise, whether it be in vocational or 
avocational pursuits (see Ward, Belling, Petushek, & Ehrlinger, 2017, for a review). Here, 
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while not denying the major importance of domain-specific factors, we consider the 
contribution of domain-general cognitive ability factors, reflecting the efficiency and 
effectiveness of basic mental processes.

Scope and Organization

In everyday life, people often rely on reputation to identify individuals with expertise—
physicians, carpenters, auto mechanics, and so on. However, reputation does not ensure a 
high level of expertise (Ericsson, 2006). As a scientific concept, expertise is better 
thought of as a person’s objective level of performance in a domain, as quantified by 
domain-relevant tasks (Ericsson & Smith, 1991) or proxy measures (e.g., performance-
based rankings). For some domains, a single type of task may be sufficient to measure 
expertise. For example, given that playing good chess obviously depends on making good 
chess moves, chess expertise can be measured with move-choice tasks (de Groot, 
1965/1978). For other domains, no single type of task captures expertise. For example, 
musical expertise comprises playing music from memory, sight-reading, and improvising, 
among other activities. Some musicians may be strong in all these activities; others may 
be strong in some but weak in others. Similarly, some auto mechanics may specialize in 
repairing diesel engines, others in transmissions, and still others in body repair. In short, 
expertise may be multidimensional.

Here, we review evidence for the role of cognitive ability in acquiring expertise. Along 
with limited space, there are two major reasons for this restricted focus. First, much of 
the controversy in contemporary research on expertise revolves around the question of 
whether, and to what extent, cognitive ability plays an important role in acquiring 
expertise (see, e.g., Detterman, 2014). Second, as industrial–organizational psychologists 
have demonstrated, measures of cognitive ability (along with other measures) are useful 
in organizational settings for selecting job applicants, because they are consistently and 
positively correlated with job performance (Schmidt & Hunter, 1998, 2004). Similarly, 
scores on standardized cognitive tests such as the Graduate Record Examination (GRE), 
the Law School Admission Test (LSAT), and the Graduate Management Admission Test 
(GMAT) are useful and valid predictors of success in advanced academic studies (Kuncel 
& Hezlett, 2007).

Table 1 Domain-general cognitive ability factors, with representative definitions and 
examples of assessments

Construct Definition/tests

Intelligence Intelligence is a very general mental capability that, among other 
things, involves the ability to reason, plan, solve problems, think 
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abstractly, comprehend complex ideas, learn quickly, and learn from 
experience. (Gottfredson, 1997, p. 13)

- Wechsler Adult Intelligence Scale (full-scale IQ)

- Raven’s Progressive Matrices (fluid intelligence, or Gf)

- Air Force Officer Qualifying Test (AFQT)

Executive 
functioning

Executive function can be thought of as the set of abilities required 
to effortfully guide behavior toward a goal, especially in nonroutine 
situations. (Banich, 2009, p. 89)

- Wisconsin Card Sorting task

- Tower of Hanoi

- Trailmaking

Working 
memory 
capacity

[Working memory capacity refers to] the attentional processes that 
allow for goal-directed behavior by maintaining relevant information 
in an active, easily accessible state outside of conscious focus, or to 
retrieve that information from inactive memory, under conditions of 
interference, distraction, or conflict. (Kane et al., 2007, p. 23)

- Operation span

- n-back

- Backward digit span

Attentional 
control

Attention control refers to the ability to protect items that are 
actively being maintained in working memory, to effectively select 
target representations for active maintenance, and to filter out 
irrelevant distractors and prevent them from gaining access to 
working memory. (Unsworth, Fukuda, Awh, Vogel, 2015, p. 864)

- Attention Network Task (ANT)

- Stroop task

- Flanker task
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Speed of 
processing

Processing speed refers to the ability to quickly and efficiently carry 
out mental operations. (Tucker-Drob, 2011, p. 333)

- Digit-symbol substitution

- Letter/pattern comparison

- Choice reaction time

Table 1 lists the cognitive ability constructs that we consider, with a definition of each 
construct and examples of assessments. Though often treated as if they are empirically 
and conceptually distinct, measures of these constructs correlate positively, and 
sometimes near 1.0 after correcting for measurement error (e.g., Engelhardt et al., 2016; 
McCabe, Roediger, McDaniel, Balota, & Hambrick, 2010). This implies that common 
mechanisms underlie individual differences in these constructs, which could include 
acquired factors such as general problem-solving strategies, neural factors such as the 
functional connectivity of different brain regions, and genetic factors (see Haier, 2016). 
Any (or all) of these factors could contribute, directly or indirectly, to associations 
between cognitive ability factors and expertise. Cognitive ability constructs are also 
sometimes described as being innate, but heritability (i.e., estimated genetic contribution) 
of any human characteristic is always less than 100 percent (Turkheimer, 2000), leaving 
room for a contribution of environmental factors. At the population level, heritability is 
typically around 50 percent for measures of cognitive ability, indicating roughly equal 
contributions of genetic and environmental factors to individual differences (Knopik, 
Neiderhiser, DeFries, & Plomin, 2016).

Review of Evidence for Role of Cognitive Ability 
in Expertise
Classical theories of skill acquisition (e.g., Fitts & Posner, 1967) posit that domain-general 
processes impact performance early in training, after which procedural knowledge 
becomes the major determinant. Consistent with this assumption, there is ample evidence 
that cognitive ability predicts initial acquisition of knowledge/skill in complex domains. 
For example, measures of cognitive ability from test batteries such as the Armed Services 
Vocational Aptitude Battery (ASVAB) positively predict job training performance, with 
validity coefficients averaging around 0.50 (Schmidt & Hunter, 2004). It is less clear 
whether cognitive ability remains a valid predictor of performance differences after 
extensive training. This question is not only of theoretical interest to expertise 
researchers (e.g., the circumvention-of-limits hypothesis; Hambrick & Meinz, 2011), but 
one of applied interest: If a measure significantly predicts performance in a task, 
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especially beyond the beginner level, then that measure might be used to help make 
decisions such as whom to select for a costly training program.

Next, we review evidence relevant to this question. We performed literature searches in 
Google Scholar and PsycINFO, using a wide range of search terms (e.g., “expertise” and 
“cognitive ability” with “sports,” “chess,” and “aviation”). We searched approximately 
1,300 documents, identifying relevant studies in two primary literatures: the literature on 
expertise in domains such as music, chess, and sports, and the literature on job 
performance. Our review focuses on studies that tested cognitive ability–performance 
relations across different levels of expertise, or at least in non-beginners. (We excluded 
studies that measured specific aptitudes, such as music aptitude and mechanical 
aptitude.) The specific question we set out to address is whether expertise mitigates the 
effect of cognitive ability on domain-relevant performance. Throughout the chapter, we 
note correlations between domain-specific factors and domain-relevant performance for 
comparative purposes.

Games

There is evidence that cognitive ability predicts acquisition of chess skill at the beginner 
level (e.g., de Bruin, Kok, Leppink, & Camp, 2014), but it is unclear what role it plays at 
higher levels of expertise. Evidence is mixed. For example, in two studies, Unterrainer 
and colleagues (Unterrainer, Kaller, Halsband, & Rahm, 2006; Unterrainer, Kaller, 
Leonhart, & Rahm, 2011) found near-zero correlations between IQ measures and chess 
rating in small samples of chess players (N = 25 and 26, respectively) with intermediate-
level average chess ratings, whereas Grabner, Stern, and Neubauer (2007) found a 
correlation of 0.35 between IQ and chess rating using a larger sample (N = 90) with a 
slightly higher average rating. Even the latter finding is tentative because the confidence 
interval around a correlation of 0.35 with a sample of 90 is quite wide, ranging from 0.15 
to 0.52.

To try to make sense of the conflicting evidence, Burgoyne et al. (2016) performed a 
meta-analysis of the relationship between cognitive ability and chess expertise. Across 19 
studies, four cognitive abilities were measured: fluid intelligence, crystallized 
intelligence, short-term/working memory, and processing speed. The meta-analytic 
average of the correlations was 0.22 (p < 0.001). (Correlations between chess rating and 
domain-specific factors are typically much larger (e.g., Pfau & Murphy, 1988, r = 0.68).) 
Burgoyne et al. also found that the correlation between fluid intelligence and expertise 
was stronger for less skilled (unranked) chess players than for more skilled (ranked) 
players (0.33 vs 0.10; see Burgoyne et al., in press, for a correction to the originally 
reported values). However, it is important to note that expertise was highly confounded 
both with age (i.e., nearly all ranked chess players were adults, nearly all unranked chess 
players were youths) and with type of skill measure (i.e., Elo ratings for ranked players, 
chess test scores for unranked players).
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In another meta-analysis, Sala et al. (2017) found that chess players are, on average, 
significantly higher in measured cognitive ability than non-chess players. As most of the 
chess samples included relatively highly skilled players, this could be because people 
high in cognitive ability are more likely to enjoy success in chess than those lower in 
cognitive ability, and are thus less likely to quit the game (i.e., performance effects). 
Alternatively, it could be that playing chess enhances cognitive ability (i.e., training 
effects) or because higher-ability individuals are more likely to take up chess than lower-
ability individuals (i.e., selection effects).

Summarized, evidence is inconclusive on whether the importance of cognitive ability 
declines with chess expertise. The same is true for other games. In neuroimaging studies, 
Lee et al. (2010, N = 16) and Jung et al. (2013, N = 17) reported IQ data on small samples 
of elite Baduk (Korean for Go) players. Full-scale IQ was lower for the Baduk players than 
for a control group by 8 points in Lee et al. (M = 93.2 vs 101.2, p = 0.052) and 7.7 points 
in Jung et al. (M = 93.1 vs 100.8, p = 0.06). The fact that the Baduk group in each study 
had a lower average IQ than the control group is somewhat puzzling and may partly 
reflect the fact that the Baduk group had less education on average than the control 
group (by 1.3 years in Lee et al., p < 0.05; and by 1.1 years in Jung et al., p = 0.19).

A much larger study of Go was carried out by Masunaga and Horn (2001). Participants (N
= 263) representing wide ranges of Go expertise completed tests of both domain-general 
and domain-specific factors. The domain-general battery included standard tests of fluid 
reasoning, short-term memory, and perceptual speed; the domain-specific battery 
included Go-embedded tests designed to measure the same abilities but with Go-specific 
content. The Go reasoning test was modeled after move-choice tasks in chess (de Groot, 
1965/1978), and can be considered a measure of Go skill. On average, the domain-general 
measures correlated 0.18 with Go move-choice. The highest correlations were for fluid 
intelligence (avg. r = 0.27); group average r values (obtained from Takagi, 1997) were as 
follows: beginner (avg. r = 0.21, p = 0.001, n = 62), intermediate (avg. r = 0.33, p < 
0.001, n = 89), expert (avg. r = 0.27, p < 0.001, n = 92), and professional (avg. r = 0.18, p
= 0.14, n = 20). These correlations are not significantly different from each other (z
statistics < 1). The average correlations between the fluid intelligence measures and Go 
rank were non-significant: beginner (avg. r = -0.03), intermediate (avg. r = -0.06), expert 
(avg. r = 0.03), and professional (avg. r = -0.26). It is somewhat surprising that fluid 
intelligence correlated with move-choice performance but not with Go rank, given the 
high correlation between the latter measures (r = 0.71) and that move-choice must be 
critical for success in Go tournaments. It could be that the move-choice task was 
somewhat artificial in that it presented the player with novel positions, whereas in actual 
Go games a skilled player can steer a game toward familiar territory and thus encounter 
more familiar positions. The average correlation of the domain-specific measures with Go 
move-choice was 0.46 and with Go rank was 0.47.

Word games have also been used to investigate the relationship between cognitive ability 
and expertise. Tuffiash, Roring, and Ericsson (2007) compared groups of elite, average, 
and novice Scrabble players on tests of various domain-specific and domain-general 
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cognitive abilities. There were significant group differences (favoring higher expertise) in 
the domain-relevant tasks (e.g., anagramming; medium-to-large effect sizes), but not in 
domain-general perceptual speed (i.e., digit-symbol substitution). However, the rated 
players (average and elite groups) outperformed the novices on tests of vocabulary and 
reading comprehension (ds > 2). More recently, Toma, Halpern, and Berger (2014) found 
that Scrabble and crossword puzzle experts tended to outperform the control subjects on 
two tests of working memory capacity (avg. d = 1.23). As in chess, these skill group 
differences could reflect performance effects, training effects, and/or selection effects.

There have been a few studies of poker expertise. In a study of undergraduate students 
described as being familiar with Texas Hold ’em poker, Leonard and Williams (2015) 
found that scores on several subtests from the Stanford–Binet Intelligence Scales 
correlated non-significantly with performance on a test of poker skills. However, in a 
sample of 155 undergraduates representing a wider range of Texas Hold ’em experience, 
Meinz et al. (2012) found that working memory capacity explained a significant amount of 
variance (avg. R  = 0.071) in measures of Hold ’em component skills (e.g., hand 
evaluation), above and beyond poker knowledge (avg. R  = 0.358). Moreover, there was 
no evidence for Poker Knowledge × Working Memory Capacity interactions, indicating 
that effects of working memory capacity on performance were similar across levels of 
poker knowledge.

Finally, Ceci and Liker (1986) found that groups of nonexperts (n = 16) and experts (n = 
14) in horserace handicapping were not only nearly identical in average IQ, but both near 
the population mean of 100 (Ms = 99.3 and 100.8, respectively). However, in a re-
analysis, Detterman and Spry (1988) found that the correlation between IQ and a key 
measure of success (correct top horse) was positive in the expert group (r = 0.35, or 0.59 
after correction for unreliability) but negative in the novice group (r = -0.25, or -0.42 
after correction for unreliability), casting some doubt on the argument that IQ is 
unrelated to success in horserace handicapping. That said, these sample sizes were very 
small, and the result would obviously need to be replicated in a larger sample.

Music

It is also unclear what role cognitive ability plays in music expertise beyond the beginner 
level. Ruthsatz, Detterman, Griscom, and Cirullo (2008) found that scores on a test of 
fluid intelligence (Raven’s Progressive Matrices) correlated positively and significantly 
with musical achievement in high school band members (r = 0.25, n = 178), but not in 
university music majors (r = 0.24, n = 19) and music institute students (r = 0.12, n = 64)
—although statistical power obviously differed across the samples. Moreover, the 
correlations did not differ between the lower- and higher-skill groups (tests of differences 
in rs, z statistics < 1). Correlations with estimated amount of deliberate practice
(Ericsson, Krampe, & Tesch-Römer, 1993) in the high school, university, and music 
institute samples were 0.34, 0.54, and 0.31, respectively (all significant).

2

2
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Meinz and Hambrick (2010) had pianists provide estimates of deliberate practice and 
perform tests of both working memory capacity and sight-reading. Deliberate practice 
accounted for 45 percent of the variance in sight-reading performance; working memory 
capacity accounted for an additional 7.4 percent. (The correlation between deliberate 
practice and working memory capacity was near zero.) Moreover, the Deliberate Practice 
× Working Memory Capacity interaction was non-significant, indicating that the effect of 
working memory capacity on performance was similar across levels of deliberate 
practice. By contrast, perceptual speed did not contribute significantly to the prediction 
of sight-reading performance.

Using a sample of 52 pianists with a more uniform level of skill (piano majors at a music 
university), Kopiez and Lee (2008) found that although correlations between sight-
reading performance and fluid reasoning (r = 0.12) and reaction time (avg. r = -0.07) 
were non-significant, there was a significant correlation for a measure of perceptual 
speed (r = -0.44; faster processing, higher performance). The correlation between 
working memory and sight-reading performance did not reach significance (r = 0.26, p = 
0.062). Correlations between measures of domain-relevant motoric speed (trilling) and 
sight-reading performance averaged 0.50; the correlation between deliberate practice 
and sight-reading performance was 0.50.

Other studies have compared musicians of varying levels of skill on measures of cognitive 
ability, as well as musicians to non-musicians. Schellenberg and colleagues have found 
that musically trained individuals tend to be higher in full-scale IQ than non-musically 
trained individuals (see Schellenberg & Weiss, 2013, for a review). As with chess, this 
difference could reflect selection effects, training effects, and/or performance effects.

Sports

Evidence for the role of cognitive ability in sports expertise is inconsistent, as well. For 
example, Lyons, Hoffman, and Michel (2009) found that scores on the Wonderlic IQ test 
correlated near zero (r = -0.04) with future NFL performance in a large sample of elite 
college football players (total N = 762; see also Berri & Simmons, 2011), whereas 
Vestberg, Gustafson, Maurex, Ingvar, and Petrovic (2012) found that a measure of 
executive functioning (design fluency from the D-KEFs) significantly predicted goals 
scored in elite Swedish soccer players (r = 0.54, N = 25), albeit in a much smaller sample.

In a meta-analysis of 42 studies, Mann, Williams, Ward, and Janelle (2007) compared 
nonexpert and expert athletes on performance measures from sports-specific perceptual-
cognitive tasks (e.g., occlusion paradigms). Across measures, there was a statistically 
significant advantage for experts (ds = 0.23 to 0.35). Given evidence for the importance 
of training in acquiring skill in sports (e.g., Ward, Hodges, Starkes, & Williams, 2007), 
these differences likely reflect domain-specific factors, but they could also reflect domain-
general factors as well (Ward et al., 2017).
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In a subsequent meta-analysis of 20 studies, Voss, Kramer, Basak, Prakash, and Roberts 
(2010) found a significant advantage for athletes over non-athletes on processing speed 
(Hedge’s g = 0.67) and varied attention tasks (Hedge’s g = 0.53) but not attentional 
cueing (Hedge’s g = 0.17). (Hedge’s g is similar to Cohen’s d.) These results lend some 
support to the possibility that domain-general factors contribute to sports expertise (i.e., 
performance effects), but as before could also reflect selection effects and/or training 
effects (Ward et al., 2017).

Science

The relationship between cognitive ability and scientific expertise has also been of 
interest to psychologists. Early studies of this relationship yielded mixed evidence. Bayer 
and Folger (1966) reported a correlation of -0.05 between IQ and number of citations (a 
proxy for scientific expertise) in a sample of 224 biochemists, and Folger, Astin, and 
Bayer (1970) found correlations ranging from 0.04 to 0.10 between cognitive ability in 
high school and number of citations in a sample of 6,300 PhDs. However, Creager and 
Harmon (1966) found that scores on the GRE predicted citation counts 8–12 years later 
(median r = 0.28; cited in Clark & Centra, 1982) in NSF predoctoral fellowship applicants 
(see also Kaufman, 1972).

More convincing results come from a meta-analysis of 6,589 correlations from 1,753 
independent samples by Kuncel, Hezlett, and Ones (2001). After applying psychometric 
corrections for statistical artifacts such as range restriction and measurement 
unreliability in the criterion measures, Kuncel et al. found that estimated validity 
coefficients (ρs) in the population for the General GRE test were positive and significant 
not only for first-year GPA (avg. ρ = 0.36; avg. r = 0.24) and overall GPA (avg. ρ = 0.34; 
avg. r = 0.23), but also for publication citation counts (avg. ρ = 0.20; avg. r = 0.15), and 
were positive for research productivity (avg. ρ = 0.10; avg. r = 0.08). Validities for the 
Subject GRE test (reflecting domain-specific knowledge) were higher for all outcomes, 
including publication citation counts (ρ = 0.24; r = 0.20) and research productivity (ρ = 
0.21; r = 0.17).

This evidence corroborates the results of the Study of Mathematically Precocious Youth 
(SMPY). As part of a planned 50-year study, the Scholastic Aptitude Test (now just called 
the SAT) was administered to a large national sample of gifted youth by age 13, and those 
scoring in the top 1 percent were tracked into adulthood (N > 2,300). Analyses have since 
demonstrated that—even within this highly restricted range of ability—SAT scores are 
positively predictive of success in scientific fields. For example, Lubinski (2009) found 
that, compared with individuals in the 99.1 percentile, those in the 99.9 percentile were 
about 5 times more likely to have published in a STEM journal and about 3 times more 
likely to have been awarded a patent.
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Thus, there is evidence that cognitive ability predicts general measures of scientific 
expertise. There is, however, some evidence that cognitive ability may become less 
important in specific scientific tasks. Hambrick et al. (2012) had a sample of 67 
participants representing a wide range of knowledge and experience in geological fields 
perform a highly realistic bedrock mapping task in which the goal was to create a field 
map representing the geological structure of an area based on observable features (e.g., 
rock outcrops). There was a significant Geological Knowledge × Visuospatial Ability 
interaction, such that a composite measure of visuospatial ability positively predicted 
map accuracy, but only in those with lower levels of geological knowledge.

Surgery/Medicine

There is a growing literature on the role of cognitive ability in surgical expertise, but the 
results are no clearer than in other domains. In a study of 120 surgical residents 
(Schueneman, Pickleman, Hesslein, & Freeark, 1984), 4 of 5 measures of visuospatial 
ability correlated significantly with surgical performance (avg. r = 0.28), as evaluated by 
attending surgeons. Year of residency correlated 0.60 with surgical performance. 
Gibbons, Baker, and Skinner (1986) found that scores on a hidden figures test correlated 
significantly with surgical performance in small samples of surgical residents (rs = 0.55 
and 0.60, Ns = 42 and 16), but Deary, Graham, and Maran (1992) found no significant 
positive correlations between expert ratings of surgical ability and intelligence test scores 
in trainee surgeons (N = 22).

Several studies have compared ability–performance correlations across different levels of 
surgical expertise. Wanzel et al. (2003) found that scores on two tests of “high-level” 
visuospatial ability (mental rotation and surface development) correlated significantly 
with expert ratings of surgical performance in dental students (novices, n = 27, avg. r = 
0.56), but not in surgical residents (intermediates, n = 12) or staff surgeons (experts, n = 
8). The correlations for the latter groups were not reported, but given the extremely small 
sample sizes here, they would not be significantly different from the novice correlation 
even if they were assumed to be zero. Comparing groups of surgeons on a simulated 
videoscopic task, Keehner et al. (2004) found that a measure of visuospatial ability 
correlated significantly with mean skill rating in a low experience group (r = 0.39, n = 
48), but not in a high experience group (r = 0.02, n = 45). But, again, the correlations are 
not significantly different (z = 1.83, p = 0.067).

Gallagher, Cowie, Crothers, Jordan-Black, and Satava (2003) found that scores on a test 
of visuospatial ability in which participants recover three-dimensional structures from 
two-dimensional images correlated significantly and similarly with performance on a 
laparoscopic laboratory cutting task in two samples of novices (rs = 0.50 and 0.50, ns = 
48 and 32) and in experienced surgeons (r = 0.54, n = 18). These correlations also do not 
differ across skill level. Enochsson et al. (2006) compared 18 resident and 11 expert 
surgeons in a simulated gastroscopy task, and found that correlations between scores on 



Domain-General Models of Expertise: The Role of Cognitive Ability

Page 11 of 40

PRINTED FROM OXFORD HANDBOOKS ONLINE (www.oxfordhandbooks.com). © Oxford University Press, 2018. All Rights 
Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a title in 
Oxford Handbooks Online for personal use (for details see Privacy Policy and Legal Notice).

Subscriber: OUP-Reference Gratis Access; date: 15 January 2019

a test of visuospatial ability (card rotation test) and various metrics of performance in 
these very small samples were generally non-significant for both groups (avg. r = 0.06).

Murdoch, Bainbridge, Fisher, and Webster (1994) found that both manual dexterity and 
visuospatial ability correlated significantly with medical students’ performance on 
microsurgical tasks (rs = -0.54 and 0.36, respectively). And in a sample of surgeons (N = 
94), Risucci, Geiss, Gellman, Pinard, and Rosser (2001) found that measures of 
visuospatial ability correlated moderately (and 10/12 significantly) with performance on 
four surgical tasks (avg. r = -0.30; higher ability, faster performance); a measure of 
domain-specific experience correlated significantly with two of the performance 
measures (rs = 0.35 and 0.29), as did a measure of domain-specific knowledge (post-test 
examination; rs = 0.30 and 0.39). Groenier, Schraagen, Miedema, and Broeders (2014) 
examined the validity of tests of cognitive ability for predicting performance in a 
laparoscopic training simulator in medical students (N = 53) over 2 months. In univariate 
analyses, visuospatial ability, spatial memory, perceptual speed, and reasoning ability 
significantly predicted one performance measure (motion efficiency), while visuospatial 
ability and reasoning ability predicted another performance measure (duration). By 
contrast, in multivariate analyses, which controlled for correlations among the predictor 
variables, only one of the preceding effects was significant. The finding that univariate 
effects became non-significant in the multivariate analyses suggests that variance 
common to the ability measures (a g factor) may have been predictive of surgical 
performance.

More recently, Louridas and colleagues performed a meta-analysis of 52 studies on the 
relationship between various measures of cognitive ability and performance in 
laparoscopic, open, and endoscopic surgery (Louridas, Szasz, de Montbrun, Harris, & 
Grantcharov, 2016). Only a few cognitive ability measures positively predicted surgical 
performance across multiple studies, among them the mental rotation test, a pictorial 
surface orientation test, and the grooved pegboard test. Louridas et al. concluded that 
“no single test has been reported to reliably predict technical performance across the 
range of techniques and skills required of surgical trainees” (p. 689).

One other study fits in this category. In a sample (N = 428) that included professionals in 
exercise science-related jobs (e.g., physicians, trainers) as well as participants from the 
general population, Petushek, Cokely, Ward, and Myer (2015) found that two measures of 
cognitive ability had non-significant effects on performance in a task designed to assess 
risk of injury to the anterior cruciate ligament (ACL). By contrast, domain-specific factors 
(i.e., ACL knowledge and use of particular visual cues) were positive and statistically 
significant predictors of performance (r = 0.59 for ACL knowledge; Petushek, 2014).
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Aviation

Several studies have tested for cognitive ability–performance correlations in aviation. In a 
sample of 86 pilots representing a wide range of experience and skill, along with 96 non-
pilots, Morrow, Menard, Stine-Morrow, Teller, and Bryant (2001) found that a cognitive 
ability composite (working memory, perceptual speed, and visuospatial ability) positively 
predicted aviation-related performance (i.e., a composite reflecting accuracy in recalling 
and understanding air traffic control, ATC, commands), accounting for 29 percent of the 
variance. An expertise composite (ATC knowledge and flight hours) accounted for an 
additional 37 percent of the variance, but the Expertise × Cognitive Ability interaction 
was non-significant for all performance measures, indicating that the effect of cognitive 
ability on performance was similar across levels of expertise.

In a similar study of pilots (N = 91), Morrow et al. (2003) found that a cognitive ability 
composite accounted for an average of 22 percent of the variance in ATC tasks; an 
expertise composite accounted for an additional 28 percent of the variance, on average. 
(Expertise × Cognitive Ability interactions are not reported for this study.) Consistent 
with these findings, in a study of 97 licensed pilots with a wide range of flight experience, 
Taylor, O’Hara, Mumenthaler, Rosen, and Yesavage (2005) found that performance in an 
aviation communication task correlated significantly with working memory (r = 0.76), 
processing speed (r = 0.33), and interference control (r = 0.43), but interactions of 
expertise (flight rating) with these factors were all non-significant.

Using a sample with 25 novice and 25 expert pilots, Sohn and Doane (2003) found that 
working memory capacity predicted success in an aviation situational awareness task, but 
only in pilots who scored low on an aviation-specific test measuring skilled access to long-
term memory (i.e., long-term working memory; Ericsson & Kintsch, 1995), as evidenced 
by a significant Long-Term Working Memory × Working Memory Capacity interaction. In 
a similar study, Sohn and Doane (2004) found that two measures of working memory 
capacity (spatial span and verbal span) correlated more strongly with situational 
awareness in 25 novice pilots (rs = 0.52, p < 0.01, and 0.30, respectively) than in 27 
expert pilots (rs = 0.10 and 0.10, respectively). However, these correlations are not 
significantly different from each other across skill groups (z statistics < 1.7). Sohn and 
Doane (2004) did not test the Long-Term Working Memory × Working Memory Capacity 
interaction using the full sample (as in their earlier study), but instead tested it 
separately in each skill group, finding significance only in the expert group.

Finally, in a small sample of private pilots (N = 24), Causse, Dehais, and Pastor (2011) 
examined the relationship of broad cognitive abilities (reasoning and processing speed) 
and executive functions (working memory updating, set-shifting, and inhibition) to 
performance during a 45-minute flight simulator task. Reasoning ability correlated 
significantly with flight-path deviations (rs = -0.63); the other correlations were non-
significant.
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Job Performance

Measures of general cognitive ability positively predict job performance (Schmidt & 
Hunter, 2004), but do they remain valid predictors after extended job experience? This 
question has long been of interest to industrial–organizational psychologists. Using 
laboratory perceptual–motor tasks, Fleishman and colleagues demonstrated that general 
ability factors become less important with training, whereas task-specific factors become 
more important (e.g., Fleishman & Rich, 1963; see Hulin, Henry, & Noon, 1990, for other 
examples). However, the general finding from large-scale studies of actual work 
performance (as opposed to laboratory tasks) is that cognitive ability remains a 
significant predictor of job performance even after extensive job experience.

McDaniel (1986) investigated the impact of job experience on the validity of general 
cognitive ability using the General Aptitude Test Battery (GATB) database.  Compiled by 
the U.S. Employment Service in the 1970s, this database includes information on a large 
sample of civilian workers, including measures of job performance (i.e., supervisor 
ratings), job experience, and cognitive ability. McDaniel computed correlations between 
“intelligence” scores from the GATB (based on visuospatial, vocabulary, and arithmetic 
reasoning scores) and job performance across different levels of job experience. As shown 
in Figure 1, the correlations decrease somewhat as a function of job experience, but are 
still significant at the maximum amount of job experience (10+ years, r = 0.20, corrected 

r = 0.29).

1
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Again using the GATB 
database, Farrell and 
McDaniel (2001) extended 
Ackerman’s (1988) model 
of skill acquisition to job 
performance. Briefly, 
Ackerman hypothesized 
that involvement of 
different cognitive abilities 
in skill acquisition is 
moderated by the 
consistency of the task: 
When the demands of the 
task are consistent, 
meaning that the stimuli, 
rules, and sequences of 
action remain constant, 
automaticity can develop 
and the influence of 
general cognitive ability 
(reflecting attentional 
resources) on performance 
decreases with training. 

Meanwhile, the influence of perceptual speed increases and later decreases (i.e., an 
inverted U function) and the influence of psychomotor speed increases. To test this 
model, Farrell and McDaniel classified jobs as consistent or inconsistent using two 
different definitions of consistency: the complexity of the job (low complexity = 
consistent, high complexity = inconsistent) and tolerance for repetition required to 
perform the job (high tolerance for repetition = consistent, low tolerance for repetition = 
inconsistent). They then computed correlations between two cognitive composites (along 
with psychomotor speed) from the GATB (intelligence and perceptual speed) and job 
performance for different levels of job experience. Support for Ackerman’s model was 
mixed. For example, the intelligence correlations decreased as a function of job 
experience for low complexity jobs, but increased slightly for high tolerance for repetition 
jobs. For the present discussion, the more important finding is simply that the cognitive 
ability factors significantly predicted job performance even at the maximum level of job 
experience: intelligence (avg. r = 0.25; avg. corrected r = 0.34) and perceptual speed 
(avg. r = 0.15; avg. corrected r = 0.20).

Studies of military personnel provide additional evidence that cognitive ability remains a 
significant predictor of job performance beyond initial training. Schmidt, Hunter, 
Outerbridge, and Goff (1988) tested for effects of cognitive ability and job experience on 
job performance in a sample of 1,474 soldiers in four jobs (armor repairman, armor 
crewman, supply specialist, and cook). Job performance was measured using work 

Figure 1.  Correlations between GATB intelligence 
scores and job performance ratings as a function of 
job experience (total N = 16,058; across intervals, ns 
= 1,000 to 1,050, except for >121.4 months, n = 
879). Solid circles represent observed (raw) 
correlations; open circles represent correlations 
after correction.

Data from McDaniel, M. A., “The evaluation of a 
causal model of job performance: The 
interrelationships of general mental ability, job 
experience, and job performance,” Tables 1 and 19, 
PhD thesis, George Washington University, 
Washington, D.C., 1986.
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samples and supervisor ratings; cognitive ability was measured using the Armed Forces 
Qualification Test (AFQT) score from the ASVAB, which is based on Arithmetic Reasoning, 
Mathematics Knowledge, Paragraph Comprehension, and Word Knowledge subtests. (Job 
knowledge was also treated as a measure of job performance, though we think of it as a 

predictor of job performance.) Up to 5 years of job experience, correlations between 
AFQT scores and job performance were nearly constant. Across this span, correlations 
ranged from 0.38 to 0.42 for work samples and from 0.18 to 0.36 for supervisor ratings. 
Beyond 5 years of job experience (i.e., 61+ months), there was apparent convergence of 
ability groups for most measures, indicating a drop in validity beginning at 5 years. 
However, average amount of job experience was actually much higher than 5 years in this 
group—from 9.5 years to 13 years, depending on the job. Moreover, only 1 of 12 AFQT × 
job experience interactions (work sample performance for armor crewman) was 
statistically significant, and it was not clearly interpretable as supporting convergence of 
the ability groups. Schmidt et al. concluded that “[a]t least out to 5 years, the validity of 
general mental-ability measures appears neither to decrease … nor to increase …. 
Instead, the validity remains relatively constant” (p. 56).

Wigdor and Green (1991) reported results of the Joint-Service Job Performance 
Measurement/Enlistment (JPM) Standards Project, a large study initiated in 1980 by the 
U.S. Department of Defense to develop measures of military job performance. Wigdor and 
Green reported that, across 23 jobs (N = 7,093 military personnel), the median 
correlation between AFQT scores and hands-on job performance (HOJP) was 0.26 (0.38 
after correction for range restriction). They also reported mean hands-on performance for 
four AFQT categories (representing different levels of cognitive ability) as a function of 
job experience. As shown in Figure 2, mean differences among AFQT categories were 
largest at 0–12 months (about 10 points, or 1 SD), but still sizeable thereafter (5–6 points, 
or 0.50–0.60 SD). Wigdor and Green concluded that “the level of performance is positively 
related to AFQT score category at each of the four levels of job experience” (p. 163) and 
noted that “the lowest aptitude group never reaches the initial performance level of the 
highest aptitude group” (p. 163).
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To further investigate 
cognitive ability–job 
performance relations, we 
obtained the JPM dataset.
The final dataset included 
31 jobs and a total sample 
size of 10,088 military 
personnel. We performed 
three new analyses. First, 
we computed the AFQT–
HOJP correlation across 
the job experience 
intervals used by Wigdor 
and Green (1991). As 
shown in Figure 3A, the 
correlations are as follows: 
0–12 months (r = 0.34, p < 

0.001, n = 747), 13–24 months (r = 0.21, p < 0.001, n = 5,234), 25–36 months (r = 0.19, p
< 0.001, n = 2,338), and 37+ months (r = 0.22, p < 0.001, n = 1,769).  There is a 
statistically significant drop in the correlation from the first year of service to the second 
(z = 3.60, p < 0.001), but AFQT is still a statistically significant predictor of individual 
differences in HOJP after the first year of service. Second, capitalizing on the large data 
set, we broke the 37+-month group into additional experience intervals, to 85+ months 
(creating any more groups would result in small sample sizes, ns < 50). As shown in 
Figure 3B, the AFQT-HOJP correlation decreases from the first year to the second, 
stabilizes, and then increases—though the estimates become less precise as sample size 
decreases.

Figure 2.  Mean Hands-on Job Performance Score by 
AFQT category (i.e., cognitive ability level). 
Percentile ranges for AFQT categories: I–II (65–99), 
IIIA (50–64), IIIB (31–49), and IV (10–30) (see Wigdor
& Green, 1991, p. 53).

Data from Wigdor, Alexandra K., and Green, Bert F., 
Performance assessment for the workplace, Volume 
1, p. 53, Table 2.5, National Academy Press, 1991.

2

3
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Finally, as the most 
statistically powerful 
analysis, we evaluated the 
Job Experience × AFQT 
interaction on HOJP using 
the entire data set via 
moderated multiple 
regression. (Prior to 
performing the regression 
analysis, we log-
transformed job 
experience because it was 
non-normal, skewness = 
2.40 and kurtosis = 9.56, 
and we mean-centered the 
predictors.) There were 
significant main effects of 
both AFQT (β = 0.210, t = 
21.92, p < 0.001, part r  = 
0.044) and log job 
experience (β = 0.167, t = 
17.37, p < 0.001, part r  = 
0.028) on HOJP. High 
levels of both AFQT and 

job experience were associated with higher HOJP. The AFQT × Log Job Experience 
interaction was also statistically significant and under-additive (β = -0.023, t = -2.41, p = 
0.016, part r  = 0.0005), though the effect was virtually nil, indicating that AFQT was 
predictive of HOJP regardless of level of job experience (see Figure 4).

Figure 3.  Correlations (with 95 percent confidence 
intervals) between AFQT scores and Hands-on Job 
Performance (HOJP) scores at 4 (A) and 8 (B) job 
experience intervals. Dashed lines are 95 percent 
confidence intervals; adjacent values are sample 
sizes.

Data from Joint-Service Job Performance 
Measurement/Enlistment (JPM) Standards Project (N
= 10,088).

2

2

2
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The overall picture to 
emerge from these large-
scale studies is that 
cognitive ability remains a 
significant predictor of job 
performance, even after 
extensive job experience 
and even if validity drops 
initially. The question of 
how far beyond initial 
training cognitive ability 
predicts job performance 
is unanswered, but the 
results we have just 
reviewed indicate at least 
5 years (Schmidt et al., 
1986) to 10+ years 
(McDaniel, 1986). Reeve 
and Bonaccio (2011) 
reached a similar 
conclusion in their own 

review of the relationship between cognitive ability and job performance, noting that 
“although validities might degrade somewhat over long intervals, we found no evidence 
to suggest that they degrade appreciably, thereby retaining practically useful levels of 
validity over very long intervals” (p. 269). Our analysis of the JPM data provide new 
support for this conclusion. Nevertheless, it remains possible that the validity of cognitive 
ability would drop to near zero over longer spans of time than have been examined in 
research (e.g., 20 years).

Discussion
What can be concluded about the role of cognitive ability in expertise? Table 2
summarizes findings from the expertise literature most directly relevant to the possibility 
of expertise-related mitigation of cognitive ability effects. These studies tested (or 
reported information to test) whether domain-specific factors mitigate effects of cognitive 
ability factors on domain-relevant performance, by either comparing ability-performance 
correlations across skill groups or testing interactions between domain-specific factors 
and cognitive ability factors. As shown, three studies provide evidence for expertise-
related mitigation of cognitive ability effects and 10 studies do not; the results of two 
other studies are mixed or unclear. Based on sample size alone, the Burgoyne et al. 
(2016) chess meta-analysis might be seen as the best evidence for mitigation, but we 

Figure 4.  Predicted values for Hands-on Job 
Performance (HOJP) for low vs high AFQT (25th vs 
75th percentile) at 5th vs 95th percentiles for Log 
Job Experience. Values generated using regression 
equation with AFQT score (mean-centered), Log Job 
Experience (mean-centered), and AFQT × Log Job 
Experience as predictors of HOJP score: HOJP score 
= 50.031 + 0.096(AFQT) + 8.119(Log Job 
Experience) + -0.052(AFQT × Log Job Experience). N
= 10,088.
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reiterate that expertise level (i.e., ranked or unranked) was highly confounded with both 
age and type of skill measure. This evidence certainly does not warrant any strong 
conclusions about expertise-related mitigation of the effects of cognitive ability.
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Table 2 Summary of evidence for expertise-related mitigation of cognitive ability effects

Study Domain Sample Size Cognitive 
Factor

Evidence for 
Mitigation?

Empirical 
Test

N Group n

Ceci & Liker 
(1986)

Handicapping 30 16/14 IQ Unclear Correlations

Masunaga and 
Horn (2001)

Go 263 62/89/92/23 Gf, Gc, PS No Correlations

Morrow et al. 
(2001)

Aviation 182 96/86 WMC, PS, VS No Interaction

Gallagher et al. 
(2003)

Surgery 98 48, 32/18 VS No Correlations

Sohn & Doane 
(2003)

Aviation 50 25/25 WMC Yes Interaction

Wanzel et al. 
(2003)

Surgery 47 27/12/8 VS No Correlations

Keehner et al. 
(2004)

Surgery 93 48/45 VS No Correlations

b c

a
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Sohn & Doane 
(2004)

Aviation 52 25/27 WMC Mixed Correlations

Taylor et al. 
(2005)

Aviation 97 25/53/19 WMC, PS, AC No Interaction

Enochsson et 
al. (2006)

Surgery 29 18/11 VS No Correlations

Ruthsatz et al. 
(2008)

Music 261 178/19/64 Gf No Correlations

Meinz & 
Hambrick 
(2010)

Music 57 NA WMC No Interaction

Meinz et al. 
(2012)

Poker 155 NA WMC No Interaction

Hambrick et al. 
(2012)

Geology 67 NA VS Yes Interaction

Burgoyne et al. 
(2016)

Chess 1,604 1,267/337 Gf Yes Correlations

Note. Studies are listed in chronological order.

d
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( ) The skill group n values are listed in order of increasing expertise. NA for skill group n indicates that expertise was treated only as 
a continuous variable.

( ) Gf, fluid intelligence; Gc, crystallized intelligence; WMC, working memory capacity; PS, perceptual speed; VS, visuospatial ability; 
AC, attentional control.

( ) In the interaction test, mitigation is tested by evaluating the statistical interaction between a domain-specific factor and a 
cognitive ability factor. In the correlations test, mitigation is tested by testing for a difference in correlations between a cognitive 
ability factor and performance across groups representing different levels of a domain-specific factor.

( ) Meta-analysis.

a

b

c

d
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What can be made of these results? Unfortunately, not much, because studies in the 
expertise literature differ in methodological/design characteristics such as sample size, 
type of criterion task, tests used to measure cognitive ability factors, and use of single 
versus composite measures to index cognitive ability factors. Any (or all) of these 
differences could explain differences across studies in cognitive ability–performance 
relationships. With some of our own studies as examples (e.g., Meinz & Hambrick, 2010, 
N = 57), it is worth emphasizing that sample sizes in this literature are often very small 
for research on individual differences (see Table 2), leading not only to low statistical 
power but low precision. Consequently, it is not surprising when results do not replicate 
(it is, in fact, often more surprising when they do). Note also that correlations in the 
expertise literature are seldom corrected for measurement error and/or restriction of 
range, resulting in systematic underestimates of the true magnitude of underlying 
relationships (see McAbee & Oswald, 2017).

A more consistent picture emerges from large-scale studies of job performance. Though 
validity may drop somewhat initially, measures of cognitive ability significantly predict job 
performance well beyond initial training. Expertise research often focuses on a specific 
aspect or component of performance in a domain (e.g., flight path prediction, poker hand 
evaluation); job performance research more often uses global measures of performance 
(e.g., overall supervisory ratings, total work sample scores). It could be that involvement 
of cognitive ability factors decreases as a function of skill in some components of a 
complex task or job but not in others (e.g., consistent but not variable components; 
Ackerman, 1992). This is one possible explanation for why correlations between cognitive 
ability and job performance may drop somewhat with job experience but still remain 
statistically significant.

Before proceeding, we note that when cognitive ability and domain-specific factors are 
measured in the same study, the latter generally account for more variance in expertise 
than the former (see Ward et al., 2017, for examples). At the same time, cognitive ability 
and domain-specific knowledge cannot generally be assumed to be independent. For 
example, Schmidt, Hunter, and Outerbridge (1986) found a correlation of 0.46 between 
AFQT scores and job knowledge. One interpretation of this finding is that measures of 
cognitive ability (e.g., IQ, working memory capacity) capture basic mental processes 
involved in acquiring information in learning situations (Ackerman, 1996; Cattell, 1971; 
Jensen, 1998). Moreover, even if domain-specific factors explain far more of the variance 
in expertise than domain-general factors, this does not preclude the latter from being 
practically useful. We examine this issue next.



Domain-General Models of Expertise: The Role of Cognitive Ability

Page 24 of 40

PRINTED FROM OXFORD HANDBOOKS ONLINE (www.oxfordhandbooks.com). © Oxford University Press, 2018. All Rights 
Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a title in 
Oxford Handbooks Online for personal use (for details see Privacy Policy and Legal Notice).

Subscriber: OUP-Reference Gratis Access; date: 15 January 2019

Potential Uses of Cognitive Ability Measures to 
Accelerate Acquisition of Expertise
There are two major ways that cognitive ability measures might be used in efforts to 
accelerate acquisition of expertise. The first is for personnel selection and classification. 
That is, cognitive ability measures might be used to make hiring decisions and to assign 
employees to jobs once hired. The second area of application is in the design of training 
programs. If a certain cognitive ability factor (e.g., attentional control) is found to be a 
significant predictor of performance in a domain, then designing training to augment or 

bootstrap that ability (e.g., prompts to direct attention to task-relevant information) might 
be particularly beneficial for individuals lower in the ability (though see Hoffman et al., 
2014, for a cautionary note about removing desirable difficulties from training).

But how large must a validity coefficient for a cognitive ability test be to justify its use for 
these applications? What qualifies as a practically significant effect? Given real-world 
outcomes (vs outcomes that do not generalize easily to the real world), moderate 
correlations can prove to be very important. Moreover, although variance explained (r ) 
may be of theoretical interest to researchers (e.g., Macnamara, Hambrick, & Oswald, 
2014), it is r and not r  that is an index of the direct relationship or the utility of a 
measure in terms of prediction (see Schmidt, Hunter, McKenzie, & Muldrow, 1979). As 
Kuncel and Hezlett (2010) commented:

Moderate relationships between predictors and criteria often are inappropriately 
discounted. For example, correlations of .30 have been dismissed as accounting 
for less than 10% of the variance in the criteria. However, this relationship is 
sufficiently large that hiring or admitting individuals who score better on the test 
can double the rate of successful performance. (p. 340)

This point was made nearly 80 years ago by Taylor and Russell (1939), who noted that 
interpreting the practical importance of correlation coefficients based on methods 
involving r

has led to some unwarranted pessimism on the part of many persons concerning 
the practical usefulness in an employment situation of validity coefficients in the 
range of those usually obtained. We believe that it may be of value to point out the 
very considerable improvement in selection efficiency which may be obtained with 
small correlation coefficients. (p. 571)

To that end, Taylor and Russell published a set of easy-to-use tables to determine the 
benefits of using selection tests of different validities in employment settings (see Law & 
Myors, 1993, for an automated approach). Three pieces of information are needed to use 
the tables: (1) the base rate of success in a job (i.e., the proportion of people who 
currently succeed in a job), (2) the selection ratio for the job (i.e., the ratio of applicants 

2

2

2
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who are selected), and (3) the validity of the test. With these three pieces of information, 
one can consult a Taylor–Russell table and find the predicted improvement in using the 
test for selection versus not using it.
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Table 3 Example of Taylor–Russell Utility Table

Base Rate of Success = 0.20

Selection Ratio

Validity 
(r)

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

0.00 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20

0.10 0.25 0.24 0.23 0.23 0.22 0.22 0.21 0.21 0.21

0.20 0.31 0.28 0.27 0.26 0.25 0.24 0.23 0.22 0.21

0.30 0.37 0.33 0.30 0.28 0.27 0.25 0.24 0.23 0.21

0.40 0.44 0.38 0.34 0.31 0.29 0.27 0.25 0.23 0.22

0.50 0.52 0.44 0.38 0.35 0.31 0.29 0.26 0.24 0.22

0.60 0.60 0.50 0.43 0.38 0.34 0.30 0.27 0.24 0.22

0.70 0.69 0.56 0.48 0.41 0.36 0.31 0.28 0.25 0.22

0.80 0.79 0.64 0.53 0.45 0.38 0.33 0.28 0.25 0.22

a
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0.90 0.91 0.75 0.60 0.48 0.40 0.33 0.29 0.25 0.22

Note. Validity (r): correlation between predictor variable and criterion variable.

( ) Selection ratio: proportion of applicants who are hired. Values in the cells of the table indicate incremental validity, i.e., expected 
rate of success as a result of using the selection test.

a
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Table 3 gives an example where the base rate is 0.20. As shown, when the selection ratio 
is low, even a selection test with modest validity will lead to a substantial improvement in 
employee performance. For example, if the selection ratio is 0.10, use of a test with 
validity of 0.20 to select applicants will lead to an 11 percent improvement over not using 
the test (or 17 percent for a test with validity of 0.30). However, if the selection ratio is 
high, even a test with high validity will yield little benefit. For example, if the selection 
ratio is 0.90, use of a test with validity of 0.80 will lead to an improvement of only 2 
percent. More sophisticated approaches to utility analysis have been developed since 
Taylor and Russell published their tables (see Hunter & Schmidt, 1996; Schmidt, Hunter, 
Outerbridge, & Trattner, 1986), but suffice it to say that use of a test with a moderate 
level of validity can be practically useful.

Rosenthal and Rubin’s (1982) binomial effect size display (BESD) provides another way to 
indicate the practical significance of an effect size of a given magnitude (see Ward et al., 
2007, for an example of how the BESD can be used in expertise research). Displaying the 
difference between two proportions (e.g., treatment vs no treatment; selection test vs no 
selection test), like the Taylor–Russell tables the BESD reveals that modest effect sizes 
can be practically important. For example, Rosenthal (2005) explained that “an r of 0.20 
is said to account for ‘only 4% of the variance’, but the BESD shows that this proportion 
of variance accounted for is equivalent to increasing the success rate … from 40 to 60%.” 
Figure 5 illustrates this point in terms of a hypothetical scenario where 100 individuals in 
an organization must be selected for a training program. In one case, a selection test with 
validity of 0.20 is used; in the other case, it is not used. As shown, using the selection test 
increases the chances that a trainee will pass the training program by 20 percent (i.e., 20 
more people out of 100 pass), even though the scores on the test account for only 4 
percent of the variance in the outcome.

Figure 5  Example of binomial effect size display 
(BESD) relevant to expertise research and 
application.
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Ethical Considerations

There are ethical issues associated with use of any psychological test to make decisions 
that affect people’s lives (e.g., hiring decisions). Probably everyone would agree that it is 
unethical (not to mention legally unwise) to select individuals using a test with no 
demonstrated validity, but consider a situation where a test has modest validity—say, 
0.30. One might argue that because the validity coefficient is far from perfect, it is 
unethical to use the test for selection because a considerable number of people with 
lower scores would be expected to succeed. However, one might also argue that not using 
the test for selection is unethical because lower-scoring individuals will be at a relatively 
high risk for failure, which may have adverse consequences for the individual (e.g., 
negative perceptions of other employees, lowered self-efficacy) and also the organization. 
Along with conducting a proper job analysis and validity study, any organization wishing 
to use a cognitive test for making personnel decisions must consider these sorts of ethical 
questions before putting the test into use (Landy & Conte, 2013).
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Conclusions
Psychologists have long been interested in identifying traits that may help to explain 
individual differences in expertise (Hambrick, Campitelli, & Macamara, 2017). Here, we 
reviewed evidence for the contribution of cognitive ability. There is ample evidence that 
cognitive ability positively predicts individual differences in complex task performance 
early in training, but it is unclear whether it remains predictive after extensive practice 
or training. Evidence from research on traditional domains for expertise research (e.g., 
chess, music) is inconsistent. For some tasks, domain-specific factors may mitigate the 
effect of cognitive ability factors on performance (e.g., maintaining situational awareness 
in aviation), but for other tasks, this may not be the case (e.g., sight-reading music). 
Evidence from research on job performance is more consistent in indicating that 
measures of cognitive ability are predictive of job performance, well beyond initial 
training. In light of this evidence, we believe that at a broad level combining optimal 
procedures for training complex skills (Hoffman et al., 2014) with valid selection 
procedures holds tremendous promise for accelerating acquisition of expertise.

At a theoretical level, we believe that it is imperative for expertise researchers to develop 
and test formal models of expertise. Research on the involvement of cognitive ability 
factors in expertise has often proceeded somewhat haphazardly, with no general theory 
describing how mechanisms underlying performance differ across domains. There is no 
better illustration of this critical point than our own work. We have conducted a number 
of one-off studies—one in piano sight-reading (Meinz & Hambrick, 2010), another in 
geological bedrock mapping (Hambrick et al., 2012), another in Texas Hold ’em poker 
(Meinz et al., 2012)—with no theory to account for how results differ across these 
domains. Moving ahead, theories of expertise should draw on existing theoretical 
frameworks to identify potential predictors of expertise (e.g., Ackerman, 1996; Ericsson 
et al., 1993; Gagné, 2017). However, guided by both computational models (e.g., Altmann, 
Trafton, & Hambrick, 2014) and cognitive task analysis (Chipman, Schraagen, & Shalin, 
2000), they must also specify the information processing mechanisms underlying 
performance in different types of tasks. Otherwise, there will continue to be no solid basis 
for comparing results across tasks, and evidence will remain fragmentary.

In the spirit of Hoffman et al.’s (2014) recommendations, we believe that it is also critical 
that expertise research expand beyond highly constrained activities such as chess, music, 
and sports, to messy real-world tasks in which the requirements of a job can change 
rapidly with technological developments and there is no well-circumscribed body of 
knowledge (as there is in, say, chess). We think that measures of cognitive ability factors 
hypothesized to underlie adaptability (e.g., attentional control, working memory capacity) 
may have particular promise for predicting performance in jobs such as these. These 
measures are also attractive because some research has suggested they may reduce 
group differences (e.g., by race/ethnicity) and resultant adverse impact in selection while 
still achieving high validity (Verive & McDaniel, 1996). More generally, we are optimistic 
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that the scientific knowledge that will accumulate through programmatic research on 
individual differences in expertise has great potential to inform efforts to accelerate the 
acquisition of societally important skills.
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