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Abstract

Working memory capacity (WMC) has long served as a central indicator of individual differ-
ences in complex cognition. However, growing evidence suggests that a substantial portion
of its predictive power may reflect attention control (AC)—including goal maintenance,
interference management, and inhibition—rather than storage capacity alone. This review
synthesizes findings across six domains: (1) perception and sensory discrimination, (2) learning
and problem solving, (3) cognitive control and decision making, (4) retrieval and memory
performance, (5) multitasking and real-world performance, and (6) clinical applications. Across
these areas, WMC-related effects frequently align with demands on AC, though the strength
and nature of this alignment vary by domain. We highlight the importance of incorporating
reliable AC measures and recommend latent-variable approaches to more clearly separate
storage, control, and representational processes underlying complex performance.

Keywords: attention control; working memory capacity; executive attention; fluid intelligence;
interference control; individual differences; latent-variable modeling; cognitive measurement

1. Introduction

For decades, working memory capacity (WMC)—the limited amount of information that
can be actively maintained under cognitive load without rehearsal (Wilhelm et al., 2013)—has
been shown to be a key factor affecting performance in complex cognitive tasks. Historically,
the concept of working memory evolved from earlier models of short-term memory, which
emphasized storage of information (Atkinson & Shiffrin, 1968). These models proposed
short-term and long-term stores with limited temporary storage, where information was
maintained mainly through rehearsal processes. However, these structural approaches
failed to account for the complex and dynamic nature of memory performance in de-
manding cognitive tasks (Engle & Oransky, 1999). To address this, A. D. Baddeley and
Hitch (1974) proposed a model of working memory, which implies a system that combines
storage with active manipulation, known as the central executive (A. Baddeley, 2000, 2012).
This domain-general control system regulates attention and coordinates subsystems that
manage domain-specific representations. This shift in emphasis—from passive storage to
executive control—reframed working memory as a mechanism for attentional regulation
and coordination, attributing it to performance across various domains.

While WMC has often been treated as a unified capacity, researchers have long debated
whether its predictive power reflects discrete short-term storage mechanisms (e.g., binding,
refreshing) or top-down executive control processes. Some models emphasize domain-
specific storage buffers (Logie, 2011), others propose capacity limits arise from interference-
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prone binding (Oberauer, 2009), and still others focus on the role of attention in actively
maintaining representations (Engle, 2002; Cowan, 2011).

This diversity of views raises a central question: To what extent is WMC a distinct
cognitive construct, and to what extent is it best understood as reflecting more fundamental
AC mechanisms?

1.1. Attention Control as the Shared Mechanism of Working Memory and Fluid Intelligence

Attention control (AC) is referred to as the domain-general ability to operate informa-
tion processing in service of current goals (Engle, 2002; Shipstead et al., 2016). It enables
individuals to maintain goal-relevant representations, resist interference, and disengage
from outdated or irrelevant content (Oberauer, 2024). AC is not a unitary construct but
comprises at least three subfunctions: goal maintenance, interference resolution, and dis-
engagement (Burgoyne & Engle, 2020; Engle & Kane, 2004). These components support
top-down regulation of attention across a wide variety of cognitive contexts.

This review is grounded in the executive attention framework, which holds that indi-
vidual differences in WMC (WMC) primarily reflect attention control mechanisms—rather
than passive storage (Engle, 2002). According to this view, WMC tasks index the efficiency of
AC—specifically, the ability to maintain relevant information and suppress interference un-
der dual-task demands. This reinterpretation gained empirical support from latent-variable
modeling studies. Engle et al. (1999) first introduced this view, revealing that WMC, unlike
short-term memory, shares variance specifically with fluid intelligence (gF) due to its atten-
tional component through latent analysis approach. Engle (2002) further demonstrated that
the link between WMC and gF is driven by AC processes, especially sustaining focus and
resisting distraction. Subsequent research has consistently supported and expanded upon this
attention-centric view (e.g., Draheim et al., 2022; Heitz et al., 2005; Shipstead et al., 2015).

Notably, the executive attention view is not the only interpretation of WMC. Other
accounts have emphasized domain-specific storage (Logie, 2011), context-sensitive binding
(Oberauer, 2009), or strategic retrieval from secondary memory (Unsworth & Engle, 2007).
While these perspectives differ in emphasis, the mechanisms they invoke—selecting among
bound representations, maintaining contextual associations, or guiding memory search—are
themselves often theorized to depend on goal-directed control. Rather than opposing the WMC
as an AC framework, they offer complementary insights into the representational systems
upon which attention operates. In this review, we focus on attention control as the organizing
constraint that enables or regulates these lower-level mechanisms.

Fluid intelligence (gF) also occupies a central position in this framework. Across hierarchi-
cal ability models, gF is defined as the capacity to perform deliberate, effortful reasoning on
novel problems—drawing inferences, integrating relations, and constructing new represen-
tations (Ackerman & Heggestad, 1997; Kyllonen & Christal, 1990; Primi et al., 2010). These
demands rely on controlled processing rather than prior knowledge, which is why gF con-
sistently correlates with executive functions. Reasoning tasks require coordinating attention
across intermediate representations, suppressing misleading or habitual responses, and revising
partial solutions when they no longer support progress (Duncan et al., 2012; Garcia-Madruga
et al., 2022). Although WMC and gF are strongly related, alternative models—storage-based
(Chuderski, 2014), relational-integration (Oberauer et al., 2008), and executive-attention (Engle
& Kane, 2004)—converge on the idea that both depend on goal-directed control. In this view,
WMLC reflects the ability to maintain stable, interference-resistant representations, whereas gF
reflects the ability to flexibly reorganize or update them in response to novelty.

A key mechanistic implication of this framework is that WMC and gF place differential
demands on distinct subfunctions of attention control. Shipstead et al. (2016) proposed that
WMC and gF tap different subfunctions of AC. WMC reflects maintenance—the ability to
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preserve task goals and representations in an accessible, interference-resistant state—whereas
gF places stronger demands on disengagement—the ability to abandon misleading infor-
mation or failed solution paths and explore alternatives. For example, complex span tasks
such as operation span prioritize maintenance, while reasoning tasks including Raven’s
matrices require flexible disengagement and representational updating. Figure 1 illus-
trates this framework, showing how executive attention governs both maintenance and
disengagement processes in response to task demands. Although these functions play
different roles across tasks, they both rely on the broader capacity to control attention.
From this perspective, WMC is best viewed as a partial expression of attention control,
centered on maintenance, but with residual variance potentially attributable to storage or
binding-specific processes (A. Baddeley, 2012; Oberauer, 2009). Recognizing this shared
but asymmetrical structure between AC, WMC, and gF is essential for clarifying their
respective contributions to individual differences in cognition.

Top-down signal organizes
maintenance and
disengagement around a
goal.

Top-Down
Executive Signal

The emphasis of
maintenance and
disengagement in carrying
out top-down goals is
partially determined by the
nature of the to-be-
performed task.

Maintenance Disengagement

Task provides an
environmental medium
around which cognitive

processes are organized.
Some tasks place a heavier

burden on maintenance,

others on disengagement.

To-be-performed
task

Figure 1. Schematic illustration of the maintenance and disengagement components described in
Shipstead et al. (2016). The diagram depicts two proposed control processes—maintenance and
disengagement—organized under a broader attentional-control framework.

1.2. Task-Level Evidence Linking Working Memory Capacity and Attention Control

At the task level, many of the empirical links between WMC and AC arise because
standard WMC measures embed substantial attention-control demands. In fact, WMC
measures—such as complex span tasks—include both a storage component and an AC
component (Engle et al., 1999; Unsworth & Engle, 2007). These tasks usually embed a
memory load within a secondary processing demand, requiring the individual to maintain
information while resolving interference or updating content—thereby engaging both
maintenance and control processes (Conway et al., 2005; Draheim et al., 2022). Consistent
with this view, individuals with high WMC tend to perform better on AC tasks that involve
minimal memory demands (Conway et al., 2001; Heitz & Engle, 2007; Kane et al., 2001;
Kane & Engle, 2003; McVay & Kane, 2009; Unsworth et al., 2004).

Latent-variable studies using structural equation modeling (SEM) reinforce this in-
terpretation, showing that much of what WMC predicts is shared with AC. When the
variance shared with AC is statistically controlled, WMC'’s links to higher-order criteria

https://doi.org/10.3390/jintelligence14020022


https://doi.org/10.3390/jintelligence14020022

J. Intell. 2026, 14, 22

4 0f22

often diminish substantially. For example, Engle et al. (1999) showed that WMC predicts
gF independently of short-term memory, implicating domain-general executive attention
rather than passive storage. This early finding laid the foundation for later distinctions
among specific AC subfunctions. Tsukahara et al. (2020) and Draheim et al. (2021) found
that AC fully mediated the relationship between WMC and sensory discrimination or gF,
respectively, with the tasks indexing interference resolution and attentional disengagement.
Multitasking performance relies substantially on the controlled mechanisms underlying
WMC, with a mediation analysis showing that capacity and attention control fully account
for the WMC-multitasking relationship (Redick et al., 2016), and subsequent findings indi-
cating that a latent AC factor alone can account for the majority of multitasking variance

and substantially attenuate the WMC—gF correlation (Burgoyne et al., 2023).

Table 1 summarizes these findings, mapping each study’s outcome, model structure,

and the specific AC mechanisms implicated in mediating the effects of WMC.

Table 1. Summary of latent-variable studies investigating the predictive power of attention control

(AC) for the relationship between working memory capacity (WMC) and other cognitive abilities.

Study (Author, Year)

Latent Model Structure

Effect of Controlling
for AC

Primary AC Mechanism
Involved

Engle et al. (1999)

Latent WMC (Complex
Span tasks) and Latent
STM predicting Latent gF.
The AC component was
indexed by the WMC
residual after controlling
for STM.

WMC (residual AC
component) still
significantly predicted gF
(B =0.49). STM did not
predict gF, highlighting the
role of executive attention.

General Executive
Attention/Controlled
Attention (maintaining
representations in the face
of interference).

Tsukahara et al. (2020)

Latent AC factor
(accuracy-based tasks)
mediating the relationship
between Latent WMC and

AC fully mediated the
WMC-Sensory
Discrimination

relationship. WMC no

Interference
Resolution/Suppression
and Attentional

Latent Sensory longer statistically Disengagement.
Discrimination. significant.
chceéﬁr‘:f fg;ﬁggﬁfgle AC fully mediated the Attentional
. crracy . . WMC-gF relationship. Disengagement/Shifting
Draheim et al. (2021) mediating the relationship WMC was no longer and Interference
between Latent WMC and statistically significant. Resolution.
Latent gF.
Capacity and AC fully
WMC predicts Latent mediated Goal Maintenance and

Redick et al. (2016)

Multitasking via Capacity
and AC latent factors.

WMC-Multitasking
relationship. WMC direct
path not significant.

Interference
Resolution/Filtering.

Burgoyne et al. (2023)

Latent AC (Squared
conflict tasks) predicting
Latent WMC, gF, and
Multitasking.

AC accounted for 75.6% of
Multitasking variance and
reduced WMC—-gF
correlation from r = 0.63 to
r = 0.40.

Goal Maintenance and
Interference
Resolution/Suppression.

1.3. Reevaluating Working Memory Capacity Research with Attention Control

Despite converging evidence in support of AC, many studies continue to frame

cognitive performance in terms of WMC. Draheim et al. (2022) attribute this persistent
emphasis to two main factors: historical inertia stemming from WMC's early success as

https:/ /doi.org/10.3390/jintelligence14020022


https://doi.org/10.3390/jintelligence14020022

J. Intell. 2026, 14, 22

50f22

a broad individual-differences construct, and the psychometric limitations of earlier AC
measures, which lacked sufficient reliability and validity until more recently.

Grounded in recent advances in the conceptualization (e.g., Shipstead et al., 2016; Tsuka-
hara et al., 2020) and measurement (e.g., Draheim et al., 2021; ]. D. Martin et al., 2021) of AC,
Draheim et al. (2022) systematically re-evaluated a wide range of applied domains. They
argued that attention control, not WMC, more fundamentally explains performance across
diverse settings. These findings also raise the possibility that AC is itself multidimensional, com-
prising distinct but interacting subfunctions such as goal maintenance, interference resolution,
and disengagement (Draheim et al., 2021; Miyake et al., 2000).

In this review, building on such empirical demonstrations, we will deeply interrogate
the theoretical assumptions behind WMC-framed findings. We argue that many of these
findings are not just empirically better predicted by AC but are more coherently explained by
attention-based mechanisms when the cognitive demands of the tasks are examined closely.
Clarifying how AC serves as a more central explanatory construct than WMC can inform both
theoretical models and real-world applications. The broader implications of this reframing—for
assessment, intervention, and applied decision-making—are discussed in later sections.

1.4. Current Paper’s Thesis and Structure

This paper challenges the widespread assumption that WMC is a foundational cog-
nitive construct, arguing instead that its predictive power primarily reflects underlying
mechanisms of AC. Guided by a theoretically motivated synthesis, we examine various
cognitive performance contexts to evaluate the explanatory reach of AC relative to WMC.
Our goal is to clarify the mechanisms driving observed individual differences by reframing
WMC not as a unitary proxy for ability, but as a composite construct whose predictive
value depends on its shared variance with AC. In doing so, we aim to advance a recon-
ceptualization that integrates empirical findings into a more precise and mechanistically
grounded framework for cognitive performance.

2. Domain-Based Re-Evaluation of WMC and Attentional Control

To assess how well AC accounts for findings commonly attributed to WMC, we
examine six cognitive domains where WMC has frequently served as a primary explanatory
construct. These include (1) perception, sensory discrimination, and early processing
(2) reasoning, problem-solving, and academic performance, (3) decision-making, self-
control, and cognitive control performance, (4) retrieval and memory, (5) multitasking and
real-world task performance, and (6) clinical dysfunctions. While WMC has often been
used to predict performance in these contexts, we consider whether closer inspection of
task demands and mechanisms suggests a more central role for AC processes—such as
goal maintenance, interference resolution, and attentional disengagement—in shaping
individual differences.

2.1. Perception, Sensory Discrimination, and Early Processing

Perceptual success—whether in detecting relevant stimuli, discriminating sensory input,
or maintaining visual focus—is often attributed to differences in WMC (Allen et al., 2011;
Bayramova et al., 2021; Hughes et al., 2013; Sorqvist, 2010; Yurgil & Golob, 2013). However,
rather than reflecting enhanced storage alone, these effects may also stem from individuals’
ability to exert AC over competing sensory inputs. Desimone and Duncan’s (1995) biased
competition framework proposes that attention resolves competition among stimuli by biasing
processing toward task-relevant inputs. This bias is guided by selection templates maintained
in working memory (A. Baddeley et al., 1986; Desimone & Duncan, 1995) and is neurally
implemented via top-down signals from prefrontal and parietal regions that modulate
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sensory cortex activity. This model offers a compelling account of how AC shapes sensory
processing (Awh & Jonides, 2001; Gazzaley & Nobre, 2012).

Gazzaley and Nobre’s (2012) review further elaborates these mechanisms by specifying
how prefrontal control regions dynamically modulate visual cortex to prioritize goal-relevant
information. EEG studies have shown that attentional modulation of visual cortical activity
during early encoding predicts later memory performance (Rutman et al., 2010), and fMRI
research demonstrates that functional coupling between prefrontal areas and visual regions
enhances relevant signals while suppressing distractors (Chadick & Gazzaley, 2011; Gazzaley
et al., 2007). Consistent with this, high-WMC individuals deploy visual attention more flexibly
and precisely (Bleckley et al., 2003), while variation in visual working memory appears to
reflect differences in attentional filtering rather than pure storage limits (Luck & Vogel, 2013),
particularly under high-interference conditions (Ester et al., 2014; Soto et al., 2010).

Auditory evidence also highlights AC. High-WMC individuals show reduced early
brain responses to irrelevant inputs, consistent with stronger sensory gating (Sorqvist et al.,
2012; Tsuchida et al., 2012). However, not all forms of distraction are equally susceptible
to control. WMC predicts resistance to distraction effects that require top-down control
(e.g., deviation effect) but not those driven by automatic interference (e.g., changing-state
sequences) suggesting that attentional mechanisms play a role only when distraction is
controllable (Hughes et al., 2013; Sorqvist, 2010). The cocktail party effect illustrates this
well: low-WMC individuals are more often distracted by automatically salient stimuli such
as their name in an unattended auditory stream, indicating a failure to suppress irrelevant
input (Conway et al., 2001). When the task requires divided monitoring, however, high-
WMC individuals are more likely to detect their name, demonstrating flexible attention
deployment (Colflesh & Conway, 2007).

While these studies often rely on WMC measures, many describe AC as the operative
mechanism. Some openly frame WMC as reflecting filtering or goal maintenance function
distraction (Hughes et al., 2013; Sorqvist, 2010), and others invoke attentional selection when ex-
plaining perceptual stability, as in the case of bistable figures (Allen et al., 2011). Even studies that
more strongly emphasize WMC as the underlying construct—such as those showing enhanced
sensory gating under high cognitive load or reduced distractor-evoked ERP responses—may
be reinterpreted as reflecting more efficient attentional suppression (Bayramova et al., 2021;
Yurgil & Golob, 2013). Importantly, recent findings suggest that AC significantly accounts for
the association between sensory discrimination and intelligence, though the extent of mediation
depends on task and model specification (Tsukahara et al., 2020).

Overall, while storage-based accounts should not be dismissed, the bulk of evidence
indicates that attentional selection, filtering, and suppression mechanisms play a primary
role in perceptual performance under interference. Apparent WMC advantages in percep-
tion may therefore reflect the engagement of top-down AC processes rather than enhanced
storage capacity per se.

2.2. Reasoning, Problem-Solving, and Academic Performance

WMC is frequently cited as a key predictor of an individual’s ability to reason effectively,
solve problems, and succeed academically (Cowan, 2014). Numerous studies associate WMC
with outcomes in tasks such as problem-solving (Beilock & DeCaro, 2007; Copeland & Radvan-
sky, 2004; Seyler et al., 2003), reading comprehension (Bayliss et al., 2003; Carretti et al., 2009),
achievement in science and mathematics (Giofre et al., 2018; Musso et al., 2019), and other aca-
demic success across domains (Bull & Scerif, 2001). However, individual differences in WMC
are often interpreted as reflecting variation in AC components. For example, Whitebread (1999)
found that the relationship between WMC and children’s performance was dependent on their
metacognitive abilities and strategy use, and Wang and Kao (2022) showed that while both
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WMC and self-regulated learning (SRL) were significant independent predictors of academic
achievement, SRL exhibited the largest effect.

Still, a subset of studies emphasize the role of storage capacity in reasoning and aca-
demic performance (Buehner et al., 2005, 2006; De Smedt et al., 2004; Fung & Swanson, 2017;
Krumm et al., 2009). For example, Buehner et al. (2005) found that storage consistently pre-
dicted reasoning outcomes, a finding replicated in their later work (Buehner et al., 2006) and by
Krumm et al. (2009), who concluded that short-term storage, rather than executive components,
accounted for the WMC-reasoning link. Fung and Swanson (2017) similarly reported that the
phonological loop directly predicted math problem-solving accuracy. However, a closer look
at these studies suggests their conclusions may overstate the independence of storage from
control processes. First, Buehner’s attention measures focused narrowly on selectivity, omitting
critical facets of AC such as goal maintenance and interference resolution. Without capturing
these mechanisms, it is difficult to conclude that attention per se is unrelated to reasoning.
Second, Buehner and Krumm's definition of storage as “storage in the context of processing”
implicitly involves coordination and executive oversight, making the construct more aligned
with controlled maintenance than with passive retention. Third, the coordination factor em-
phasized by Krumm-—Ilater refined as relational integration by Oberauer et al. (2008)—requires
executive-level binding of multiple representations, a process that reflects domain-general
AC. Finally, Fung and Swanson (2017) used executive measures (e.g., conceptual span), which
may have suffered from task impurity, blending executive and knowledge-based demands.
These limitations caution against interpreting such findings as evidence that storage alone
underlies reasoning and instead support the view that AC remains central to understanding
the predictive power of WMC in academic and reasoning contexts.

A broader perspective situates reasoning and academic performance within fluid intelli-
gence, highlighting their shared reliance on attention control mechanisms. Reasoning (Carroll,
1993; Kyllonen & Christal, 1990; Sternberg, 1986), problem-solving (Duncan et al., 2008) have
been widely accepted as proxies for gF (Kane et al., 2005; Primi, 2002) along with academic
achievement (Ackerman & Heggestad, 1997; Farsides & Woodfield, 2003). The observed
associations between gf and WMC (Conway et al., 2002; Jaeggi et al., 2008; Jastrzebski et al.,
2018; Kane et al., 2005) likely reflect their shared dependence on AC mechanisms rather than
separate structural capacities (Engle et al., 1999; Shipstead et al., 2016). Duncan et al. (2012)
demonstrated that gF closely aligns with performance on rule-based working memory tasks,
which involve constructing and managing novel representations—tasks that rely heavily on
AC—rather than simpler storage tasks such as digit span, spatial span, or visual short-term
memory. Hambrick and Engle (2003) similarly found that shared variance between WMC and
reasoning tasks was best explained by AC processes.

Numerous studies have interpreted reasoning, problem-solving, and academic achieve-
ment through the lens of executive functioning (EF) (e.g., Garcia-Madruga et al., 2022;
Latzman et al., 2010; Miyake et al., 2000; Spiegel et al., 2021; Willoughby et al., 2012). EF is
traditionally characterized by three core components—updating, shifting, and inhibition
(Miyake et al., 2000), which can be mapped onto the maintenance-disengagement distinc-
tion emphasized in later AC frameworks (Engle, 2002; Kane & Engle, 2003; Shipstead et al.,
2016). Goal maintenance corresponds to keeping task-relevant representations active, a
process that overlaps with updating when defined as controlled refreshing and with aspects
of inhibition when it supports protection of the current goal state (Garcia-Madruga et al.,
2022; Oberauer et al., 2003). In contrast, disengagement reflects the deliberate dropping
or clearing of no-longer-useful information, aligning with the shifting component of EF
and with the substitution aspect of updating—both of which require releasing outdated
representations so new ones can be instantiated.
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Meanwhile, dual-process theory offers insight into how AC supports reasoning. It
distinguishes System 1, which is fast and automatic, from System 2, which is deliberate and
effortful (Evans, 2003; Evans & Stanovich, 2013; Garcfa-Madruga et al., 2007, 2022; Kahne-
man, 2011; Sloman, 1996). Sustained AC underlies System 2’s ability to override heuristics
and construct valid representations. High-WMC individuals, who exhibit greater AC, tend
to favor rule-based strategies and outperform others on deductive reasoning tasks (Beilock
& DeCaro, 2007; Garcia-Madruga et al., 2007; Wiley & Jarosz, 2012). However, the same
sustained control can also lead to rigidity or overfocus, contributing to underperformance
in creative contexts or under pressure (Beilock & DeCaro, 2007; Wiley & Jarosz, 2012). These
findings illustrate that AC can both support and constrain reasoning, depending on the
demands for flexibility versus stability.

2.3. Decision-Making, Self-Control, and Cognitive Control Performance

Building on this dual-process perspective, decision-making and self-control perfor-
mance rely on cognitive control operations grounded in attention control. Defined by atten-
tional functions such as goal maintenance and inhibition, cognitive control embodies the
effortful regulation required to guide behavior in line with goals (Braver, 2012; Redick, 2014).
Although studies often use WMC tasks to measure ‘control” as the counterpart to auto-
matic/associative processing, the construct is implemented by AC operations—maintaining
goals, prioritizing task-relevant information, and suppressing prepotent/automatic re-
sponses (Barrett et al., 2004; Fletcher et al., 2011). Braver et al.’s (2007) dual mechanisms
of control framework further distinguishes proactive control (sustained, anticipatory goal
maintenance) and reactive control (phasic, interference-triggered reconfiguration), both
grounded in attentional regulation.

However, such control can carry context-dependent costs. In risky-choice framing, high-
WMC individuals showed greater susceptibility to framing effects, likely due to elaborate,
gist-based encoding (Corbin et al., 2010). This tension is pronounced in the AX Continuous
Performance Task (AX-CPT), which probes control dynamics with sequences of cue—probe
pairs (e.g., “Respond to "X’ only if it is preceded by ‘A"). Proactive control facilitates performance
for the target cue—probe pairs. However, target response proactively prepared after ‘A’ must be
inhibited when the interfering ‘Y’ follows, producing slower and more error-prone responses.
High-WMC individuals often show larger interference costs in these trials, but this may reflect
strategic prioritization of proactive control rather than an attentional failure (Redick, 2014). If
WMC primarily reflected storage capacity, we would expect uniformly better performance
across trial types. Instead, the variability in success across proactive- and reactive-reliant
conditions underscores that what WMC measures were predicting the ability to regulate and
deploy attention in alignment with contextual goals instead (however, Rosales et al., 2022 argue
that high-WMC individuals generally perform well across both proactive and reactive, still
interpreting it as reflecting overall control efficiency).

These mechanisms of cognitive control extend into everyday decision contexts. In
morally and ethically complex decisions, high-WMC individuals tend to favor utilitarian
judgments and perform better in ethical reasoning tasks because they are more likely
to suppress affective interference, sustain abstract goal states, and coordinate multiple
competing constraints—operations grounded in executive deliberation and attentional
filtering (A. Martin et al., 2015; Moore et al., 2008). In tactical sports contexts, AC enables
athletes to override prepotent, irrelevant responses and adapt dynamically to situational
demands (Furley & Memmert, 2012), while in syllogistic reasoning tasks, WMC predicts
better performance via attentional suppression of biases and focus on goal-relevant stimuli
(Fletcher et al., 2011). In high-demand decision contexts involving uncertainty or competing
goals, AC facilitates consistent goal pursuit and suppression of irrelevant reactivity (Rakow

https://doi.org/10.3390/jintelligence14020022


https://doi.org/10.3390/jintelligence14020022

J. Intell. 2026, 14, 22

9 of 22

et al., 2010), and WMC facilitates goal fulfillment such as achieving cognitive closure
quickly (Czernatowicz-Kukuczka et al., 2014).

Neuroscientific evidence reinforces the view that attention control underlies cognitive
control. The prefrontal cortex (PFC), particularly the lateral regions, provides the sub-
strate for sustaining goals and resolving interference, flexibly coordinating thought and
action (Miller & Cohen, 2001). Within the Dual Mechanisms of Control framework, sus-
tained PFC activation supports proactive control, while transient responses reflect reactive
engagement—mirroring attentional dynamics (Braver, 2012). Supporting this, dissocia-
tions with posterior regions show that distractor resistance and flexibility rely on recurrent
PFC circuitry rather than storage-based representations (Murray et al., 2017). Also, High-
WMC individuals exhibit increased activation in frontoparietal regions associated with
AC—particularly the dorsolateral and anterior prefrontal cortex—during tasks requiring
sustained goal maintenance and conflict resolution (Jimura et al., 2018; Minamoto et al.,
2015). These neural patterns are consistent with AC, though PFC activation may also reflect
broader cognitive operations such as conflict monitoring or strategic retrieval.

2.4. Retrieval and Memory

Although strongly related to WMC, many retrieval advantages in fact hinge on AC,
particularly the ability to inhibit competing information. Defined as suppressing irrelevant
responses (Aslan & Bauml, 2011; Engle et al., 1999), inhibitory control is effectively utilized
by High-WMC individuals to perform better on retrieval tasks. For instance, Rosen and
Engle (1997) reported that high-WMC participants suppressed first-list responses under in-
terference conditions in a paired-associates task. Related work on verbal fluency has shown
that high-WMC individuals are better at suppressing previously relevant but currently
irrelevant responses; however, this effect has been reevaluated as potentially confounded
by gF, with follow-up analyses suggesting that performance is better accounted for by
individual differences in gF (Shipstead et al., 2016).

Other work has shown that high-WMC individuals commit more retrieval-induced
forgetting (RIF) (Aslan & Bauml, 2011)—the tendency to forget unpracticed items from a
studied category after repeatedly retrieving related items—and more pronounced negative
priming effects under high-interference conditions (Marsh et al., 2015), both reflecting executive
inhibitory engagement. However, divergent findings exist. For example, Mall and Morey
(2013) found that high-WMC individuals showed less RIF. This discrepancy has been attributed
to task format differences: while Aslan and Bauml used a short-delay item recognition test
that tapped suppression processes during encoding and short-term retrieval, Mall and Morey
used a cued recall task with a 25 min delay, emphasizing retrieval from long-term memory.
The latter relied more on targeted search and focused cue access—mechanisms associated
with controlled search from secondary memory rather than active inhibition (Kliegl & Bauml,
2021). More broadly, research supports the view that retrieval reflects both AC and memory-
intrinsic mechanisms, such as representational strength, trace competition, and cue-dependence.
Controlled attention is crucial for minimizing interference during encoding, maintaining task
goals, and suppressing competing traces at retrieval (Hamilton et al., 2022; Kotyusov et al.,
2023; Unsworth & Engle, 2007). At the same time, retrieval success also depends on cue quality,
search dynamics, and the stability of stored representations, especially under conditions of
high similarity or delay (Kliegl & Bauml, 2021).

One thing to note is that inhibition is more closely associated with gF than WMC
(Shipstead et al., 2016). In fact, some studies report positive correlations between gF and
retrieval performance (e.g., de Lima & Buratto, 2025; Minear et al., 2018). As mentioned
in the reasoning, problem-solving, and academic performance section, WMC and gF
are closely related constructs (Conway et al., 2002; Jaeggi et al., 2008; Jastrzebski et al.,
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2018; Kane et al., 2005), largely due to their shared reliance on a top-down executive
attention system (Engle et al., 1999; Shipstead et al., 2016). Accordingly, inhibition in high-
WMC individuals during retrieval tasks likely reflects overlapping attentional mechanisms
common to both WMC and gF, though the degree and direction of influence may vary
across tasks.

Such a pattern, in fact, manifests across each stage of memory. During encoding,
WMC benefits emerge from active organizational strategies, prioritization of valuable
information, and distraction suppression (Robison & Unsworth, 2017; Weeks & Hasher,
2017). During retrieval, differences in WMC are pronounced in tasks requiring interference
resolution, strategic cue access, or selective recall (Rosen & Engle, 1997; Unsworth et al.,
2012). Even at the storage stage, WMC reflects how attention consolidates perceptual inputs
into stable traces (Ricker et al., 2018) and protects them via refreshing, interference removal,
or strategic off-loading into activated long-term memory (Rhodes & Cowan, 2018).

In sum, memory retrieval does not operate independently of AC but is largely shaped
by them—whether through direct inhibition or strategic guidance of search. WMC serves as
an index of how flexibly attention can be deployed across memory demands. Nonetheless,
memory-intrinsic dynamics also play a critical role, and task format, cue structure, and
delay intervals can shift reliance between AC and storage-based retrieval processes. Under-
standing this interplay highlights the role of AC on goal-directed memory performance.

2.5. Multitasking and Real-World Task Performance

To generalize laboratory findings to real-world cognition, multitasking provides an
effective starting point: it requires managing competing goals, coordinating responses
across modalities, and adjusting plans in real time. While WMC is often treated as the
primary predictor in these contexts (Colom et al., 2010; Hambrick et al., 2010; Konig
et al., 2005; Redick, 2016; Redick et al., 2016), evidence shows that success depends less
on storage and more on regulating task goals, suppressing distraction, and reallocating
resources—functions of AC.

Himi et al. (2023) reviewed 43 studies on individual differences in multitasking
and showed that although WMC often emerged as a predictor, its unique contribution
diminished when shared variance with executive functions was modeled. In contrast,
higher-level control abilities—such as updating and relational integration—remained ro-
bust and theoretically central predictors of multitasking performance (Friedman et al,,
2008, 2016; Himi et al., 2019; see also Chuderski, 2014, arguing that relational integration
functions independently of significant executive control). These findings suggest that
successful multitasking relies less on storage capacity per se and more on AC operations
that support goal maintenance and the suppression of distraction.

Likewise, studies linking WMC to multitasking often highlight its underlying atten-
tional mechanisms rather than storage (Engle et al., 1999; Kane et al., 2007). Otermans et al.
(2022) showed that performance drops under dual-task or order-change conditions were
better explained by goal sequencing and interference control—both AC mechanisms—than
by storage limitations. In applied simulations like SynWin, performance was predicted
by executive attention and strategic allocation rather than raw capacity, with single-task
and complex-span measures contributing similarly (Hambrick et al., 2010; Redick, 2016)
extended these findings to more complex environments, including Air Traffic Control sce-
narios, showing that the relationship between WMC and multitasking was fully accounted
for by capacity and attention control, alongside related executive processes. This pattern
reinforces the view that WMC predicts multitasking largely because of its shared variance
with AC mechanisms, rather than through storage-specific pathways. Driving studies
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also trace distraction-related costs to goal maintenance and inhibitory control (Louie &
Mouloua, 2019; Mantylé et al., 2009; Wood et al., 2016).

Real-world interruptions follow the same logic. In safety-critical settings, interruptions
often cause errors (Foroughi et al., 2014; Latorella, 1996; Westbrook et al., 2018). Some
studies have linked resistance to such interruptions to the inhibitory function of AC (Mirho-
seini et al., 2020; Tams et al., 2015) as reviewed in Draheim et al.’s (2022) work. A similar
pattern emerges in laboratory simulations of everyday multitasking. The Edinburgh Virtual
Errands Test (EVET) requires participants to navigate a 3-D environment while managing
multiple errands. Performance in EVET is predicted not by verbal storage or rehearsal,
but by AC-related processes such as spatial attention, goal monitoring, and updating (Law
etal., 2013; Logie et al., 2011).

Neuroscientific and computational modeling evidence further support this interpreta-
tion. For example, Medeiros-Ward et al. (2015) showed that “Supertaskers” more efficiently
recruited the anterior cingulate and frontopolar cortices—regions critical for goal mainte-
nance and distraction suppression—during a demanding dual N-back task, with reduced
medial PFC activation at high loads indicating neural efficiency. Complementing this,
Nijboer et al. (2016) showed that multitasking interference reflects resource competition
within a distributed working memory system, and that models including control-related
components fit behavioral and fMRI data better than capacity-only accounts. Although
these studies do not directly compare the neural substrates of WMC and AC, the patterns
are compatible with the view that multitasking engages domain-general control systems
and that AC-related mechanisms contribute meaningfully to performance.

Taken together, these behavioral, computational, and neural findings suggest that
many effects historically attributed to WMC in multitasking contexts can also be under-
stood through the lens of AC. Across structured simulations and immersive environments,
multitasking success appears to depend on the regulation of goals, resistance to interfer-
ence, and the flexible coordination of cognitive operations—while acknowledging that
multiple mechanisms beyond AC may also play supportive roles.—while leaving room for
contributions from strategy, knowledge, and processing speed without overextending the
explanatory scope of any single construct.

2.6. Clinical Dysfunctions

Internalizing and externalizing disorders are widely understood to involve cognitive
and/or AC deficits, including ADHD (Barkley, 1997; Nigg, 2000, 2001), depression (Gotlib
& Joormann, 2010; Joormann & Gotlib, 2008; Keller et al., 2019), anxiety (Derryberry &
Rothbart, 1997; Reinholdt-Dunne et al., 2009), and schizophrenia (Barch, 2005; Luck &
Gold, 2008). Reframing these dysfunctions through the lens of AC provides a coherent way
to understand why similar patterns of cognitive dysregulation appear across otherwise
distinct disorders. This perspective does not deny the importance of motivational, affective,
neurobiological, or representational factors; rather, it highlights how these processes often
interact with difficulties in attentional regulation. The aim is therefore to clarify AC’s role
as a meaningful contributor—without suggesting it is the sole basis—while keeping neural
and mechanistic interpretations appropriately cautious.

2.6.1. ADHD

ADHD inherently implicates attentional and inhibitory deficits, and foundational
models frame the disorder as involving failures of behavioral inhibition and attentional
regulation (Barkley, 1997; Nigg, 2000, 2001; Pliszka et al., 2000). Barkley’s (1997) seminal
theory identifies ADHD as rooted in primary deficits in behavioral inhibition, which give
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rise to broader executive dysfunctions. Kofler et al. (2010) similarly found that central
executive deficits, particularly those linked to AC, predicted inattentive behavior.

Still, ADHD research often interprets impairments in terms of WMC. Meta-analytics by
Martinussen et al. (2005), for instance, shows reduced performance on WMC tasks, though
many of these tasks embed attentional demands. Dual-component models by Gibson et al.
(2010, 2018) report greater deficits in secondary memory retrieval, which can be partially
reinterpreted as failures of attentional gating—difficulty sustaining access to goal-relevant
information. Neuroimaging findings align with this interpretation but require caution:
reduced frontoparietal activation in adults with ADHD (Burgess et al., 2010) may index
impaired goal maintenance yet could also reflect broader cortical inefficiency or reduced
task engagement. Luo et al. (2019) likewise reported attenuated ERP markers of selection
(reduced N2pc) and maintenance (reduced CDA), consistent with reduced efficiency in
attentional selection and working memory processes, which they interpret as evidence that
reduced working memory performance is closely tied to insufficient attentional selection
ability. Their findings highlight a specific selection-related mechanism without addressing
alternative explanations such as broader cortical inefficiency or reduced task engagement.

At the same time, ADHD symptoms reflect contributions from motivational dysreg-
ulation, arousal variability, and delay aversion (Barkley, 1997), as well as difficulties in
sustaining stable representational states (Barkley, 1997; Gibson et al., 2010, 2018). These
factors interact with—but are not reducible to—attentional regulation, consistent with
models positioning poor sustained attention as a secondary outcome of broader executive
and motivational impairments.

2.6.2. Affective Disorders

Affective disorders frequently involve heightened distractibility, difficulty disengaging
attention from negative stimuli, and reduced cognitive flexibility—symptoms tied to AC
limitations (Derryberry & Rothbart, 1997; Harvey et al., 2004; Rothbart et al., 2004). Atten-
tional Control Theory (ATC; Derakshan & Eysenck, 2009; Eysenck et al., 2007) describes
how anxiety undermines inhibitory control and shifting, especially under load. Depression
likewise involves slowed attentional disengagement and rumination-driven narrowing of
attentional scope (Whitmer & Gotlib, 2013; Yaroslavsky et al., 2019). Although AC deficits
relate closely to symptom severity, these associations are bidirectional and occur alongside
mood-congruent processing biases, emotional reactivity, and representational disturbances.
In this context, attentional processes operate in interaction with affective mechanisms that
are central features of anxiety and depression, indicating that AC is one important pathway
influencing symptom expression but not the only one.

Meta-analytic work supports AC as an important predictor of anxiety. Moran (2016)
showed that anxiety’s association with WMC (g = —0.33) was modest compared to filtering
efficiency (g = —0.70), though differences in task properties and sample characteristics
caution against overinterpreting effect-size contrasts. In another review, Shi et al. (2019)
similarly reported strong links between AC and anxiety (g = —0.58). Even research framed
around WMC in depression often explains deficits through AC—failures to inhibit irrele-
vant negative content or maintain goal-relevant representations (Joormann & D’Avanzato,
2010; Joormann & Gotlib, 2008). Intervention studies further support this interpretation:
mindfulness and adaptive WMC training improve symptoms partly by enhancing AC
(Beloe & Derakshan, 2020; Vago & Silbersweig, 2012). Still, these improvements likely
arise from multiple mechanisms, including reduced emotional reactivity and enhanced
representational stability, yet they also highlight that strengthening attentional regulation
can play a meaningful role in alleviating affective symptoms.
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2.6.3. Schizophrenia

Historical and contemporary accounts of schizophrenia describe pervasive impairments
in attentional regulation, including difficulties with rule selection and context processing
(Bleuler, 1911/1950; Kraepelin, 1919). Inhibitory deficits become especially pronounced under
high attentional load, consistent with evidence that increased demands strain both attentional
resources and inhibitory control (Henik & Salo, 2004). Some findings further suggest that these
difficulties reflect not only resource limitations but also failures of inhibition itself (Michael
et al., 2020). Within this framework, WMC supports the maintenance and implementation of
task rules but is often overshadowed by failures in attentional regulation.

At the same time, schizophrenia research frequently interprets cognitive deficits as
WMC impairments—difficulties in maintaining and manipulating information (Barch, 2005;
Gold et al., 1997). Yet these deficits are often described in terms of disrupted context process-
ing, impaired attentional filtering, and limited inhibitory resources (Barch, 2005; Michael
et al., 2014), all closely tied to AC. Nevertheless, schizophrenia also involves representa-
tional and sensory-processing abnormalities, such as deficits in perceptual organization,
N100/P50 sensory gating, and contextual integration, which extend beyond attentional
regulation and highlight opportunities to examine how these perceptual and contextual
disturbances interact with AC.

Across clinical populations, cognitive impairments often attributed to WMC reflect,
at least in part, difficulties in regulating attention. However, ADHD, affective disorders,
and schizophrenia each exhibit distinct cognitive signatures shaped by motivational, repre-
sentational, affective, and neurobiological factors. Attentional control therefore provides a
unifying—although not exhaustive—framework: a major contributor that interacts with
multiple disorder-specific mechanisms.

3. Discussion

This review examined six domains to determine when effects attributed to WMC instead
reflect AC. By comparing task demands across perception, learning and problem-solving,
reasoning, decision-making, retrieval, multitasking, and clinical outcomes, we identified where
“capacity” effects arise from control operations such as goal maintenance, interference sup-
pression, and disengagement. Building on the direction outlined by Draheim et al. (2022) and
Pak et al. (2024), this review advances the WMC-AC framework by (a) offering a deeper
theoretical articulation of how core AC mechanisms—goal maintenance, interference sup-
pression, and disengagement—relate to patterns traditionally associated with WMC, and (b)
demonstrating, across six comprehensive cognitive domains, how this refined articulation
generalizes to diverse findings through a consistent, mechanism-based interpretation.

3.1. Task-Level Measurement: Dissociating AC and WMC

Going forward, research should rely more directly on attention-control measures
instead of relying on complex span as a proxy. Complex span variants (e.g., operation,
rotation, symmetry) are primary WMC indices, yet their broad predictiveness arises be-
cause the paradigm embeds control demands: processing and to-be-remembered items
are interleaved and followed by serial recall, so success depends on stabilizing actively
maintaining the goal state during interference and distraction, continuously updating infor-
mation, and preventing intrusions from irrelevant or automatically activated information
(Conway et al., 2001; Engle et al., 1999; Giofre et al., 2018; Miyake et al., 2000; Swanson &
Alloway, 2012; Yurgil & Golob, 2013); by contrast, simple span tasks minimizes interference
and correspondingly predicts more weakly (Conway et al., 2002; Engle, 2002). Visual-arrays
tasks—especially selective/filtering versions—converge on the same point: once effective
filtering is cued or supported, apparent performance gaps contract, identifying selection
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as the operative bottleneck (Tsukahara et al., 2020). The same control variance is evident
in classic AC tasks such as antisaccade, Stroop, and flanker, which require suppressing
prepotent responses and keeping rules active under conflict with minimal mnemonic
load (Engle, 2002; Kane & Engle, 2003; Kane et al., 2006; Miyake et al., 2000; Tsukahara
et al., 2020). Continuous updating paradigms like the n-back, selective attention under
competition (e.g., dichotic listening), and task switching likewise depend on restricting
access to outdated representations and disengaging from prior sets on time. Accordingly,
future studies should include high-reliability AC measures (e.g., Squared Flanker, Squared
Simon, and Squared Stroop; Burgoyne et al., 2023) alongside well-designed WMC tasks
that separately manipulate maintenance and interference demands. Orthogonally varying
set size, distractor salience, parallel processing, and filtering cues—rather than embedding
all demands within a single composite score—will allow clearer identification of the spe-
cific control operations that limit performance. This task-level refinement is a necessary
foundation for distinguishing storage from control processes and for improving construct
validity moving forward.

3.2. Latent-Variable Approaches

Although WMC and AC can each be decomposed into more fine-grained operations—such
as goal maintenance, interference suppression, and disengagement—current measurement
science offers no process-pure tasks capable of isolating these components with adequate re-
liability. Most laboratory tasks confound multiple operations (the “task impurity problem”;
Miyake et al., 2000), making single-task estimates too noisy to serve as direct indicators of
individual processes. Construct-level latent variables therefore remain essential because
they capture the covariance shared across tasks, separating the common control component
from task-specific variance. In this framework, AC and WMC function as empirically
tractable clusters of underlying mechanisms, allowing those mechanisms to be dissociated
statistically even when they cannot be measured in isolation. Process-level analyses re-
main theoretically informative, but latent-variable modeling currently provides the most
stable and interpretable method for distinguishing storage, control, and representational
contributions to cognitive performance.

Such value of latent-variable modeling is demonstrated across multiple lines of work.
Classic working-memory studies (Engle et al., 1999; Conway et al., 2002) demonstrated that
latent WMC predicts gF beyond short-term storage. Executive-function models similarly
separate common control processes from shifting- and updating-specific variance (Miyake
et al., 2000; Friedman et al., 2008, 2016). Dual-component accounts further break WMC
into attention-control and secondary-memory components (Unsworth & Spillers, 2010),
and more recent SEM work isolates AC as a separable latent factor that accounts for
substantial variance in gF, WMC, and multitasking (Tsukahara et al., 2020; Draheim et al.,
2021; Burgoyne et al., 2023). Together, these findings show that latent modeling provides a
principled route for clarifying when WMC and AC converge and when their underlying
mechanisms diverge.

4. Conclusions

Across six domains, the evidence reviewed here suggests that the broad predictive power
traditionally associated with WMC often reflects the AC operations embedded within complex-
span tasks—particularly goal maintenance, interference suppression, and disengagement. This
does not diminish the importance of WMC as a measurable construct; rather, it clarifies that
many WMC tasks draw on AC mechanisms, which are more directly tied to performance in
interference-heavy contexts. With recent advances in high-reliability AC measures, it becomes
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possible to assess these mechanisms more directly and with greater precision than was feasible
when WMC tasks served as the default proxy for executive attention.

This shift toward measuring AC more directly also carries practical implications across
applied settings. In personnel selection, AC-based assessments show smaller subgroup dif-
ferences and less dependence on acculturated knowledge than many traditional cognitive
tests, suggesting a fairer and more targeted basis for evaluating complex task readiness
(Bosco et al., 2015; Burgoyne et al., 2021). In high-stakes environments—such as policing,
aviation, and other dynamic decision contexts—AC predicts operators’ ability to maintain
goals, adjust criteria, and override prepotent responses under pressure (Brewer et al., 2016;
Kleider & Parrott, 2009; McVay & Kane, 2009). Clinical and educational findings similarly
point to attentional regulation as a closer determinant of symptoms and learning difficul-
ties than storage capacity alone, with interventions improving outcomes largely through
strengthened control processes (Dehn, 2011; Draheim et al., 2022; Moran, 2016).
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